
UPDATE NOTICE

DECsystem-1 O/DECSYSTEM-20
Processor Reference Manual

AD-H391 A-T1

Juno 1982

Insert this Update Notice in the DECsysrem-IOIDECSYSTEM-20
Processor Reference Manual to maintain an up-to-date record
of changes to the manual.

Changed Information

The changed pages contained in this update package reflect
addition of G format floating point, addition of one-word global
byte pointer, numerous minor updates and corrections, deletion
of special material for TOPS-20 Releases 1 and 2.

The instructions for inserting this update start on the next page.

Copyright 0, 1982, Digital Equipment Corporation. All Rights Reserved.

INSTRUCTIONS
AD-H391 A-J-1

The following list of page numbers specifies which pages are to be placed in the DECsystem-IO/
DECSYSTEM-20 Processor Reference Manual as replacements for, or additions to, current pages.

[
Title page
Copyright page [

2-7 3-5
2-8 [3-6 [

347
3-56

. . .

[iv III [2-13 2-28.6 [3-11 3-12 1 4-33 4-36

[
l-l

[
2-65

14 2-68.1 C
3-17
3-18 [

A-l
A-16

[
l-9

1
2-69

l-10 2-70 [
3-27
3-28 [

A-19
A-20

[1-13

1-18

[2-85 2-92.1 [3-31 3-36 [Eyl
E-6

[1-21
1-22.1

Entire [2-l 25
2-l 26

[3-39 340 [
Index

[
l-25

[
3-l

l-28 3-2.1

PLEASE NOTE that the change bars in the outside margin and date printed at the bottom of the page
indicate pages where technical information has changed.

KEEP THIS UPDATE NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE
RECORD OF CHANGES.

June, 1982

I
. -

DECsystem-10
DECSYSTEM--20

Prscessor Reference Manual
AA-H391 A-TK, AM-4391 A-T1

June 1982

This document explains the machine language programming of
the central processors used in the DECsystem-10 and
DECSYSTEM-20.

Software and manuals should ba ordered by tii and order number. In the United States, send orders
to the nearest distribution center. Outsii the United States, orders should be directed to the nearest
DIGITAL Fti Sates Office or mpresentative.

~nmtkReglon CentralRegkm weetern Regim

OiiaI Equipment Coworatbn oi@tal Equipment Corporation Diiitat Equipment Cofpofation
Poeoxcs2co8 Acccwsorwa and Suppties Center Accessories and Supp~cls Center
Nashua New Hamphire OS061 1050 East Remington Road 632 Caribbean Drive
Tebphone:(603)S84466O Schaumburg, Illinois 60195 Sunnyvate. CaMornta 94086

Te

First Edition, May 1999
Second Edltlon, December 1971
Third Edition, August 1974
Fourth Edition, February 1978
Fifth Edition, July 1990
Updated, June 1992

Copyright 0, 1966, 1971, 1974, 1976, 1962, Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem-l0 MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS VT

m RT

The postage-prepaid READER’S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

-

Contents

Preface

Chapter 1 Introduction

1.1 KLlO-based System Organization l-4

The KLlO processor l-8

1.2 KSlO-based System Organization l-11
1.3 Timesharing l-15
1.4 Number System 1-19

Floating Point Numbers 1-21
Expanded Range Floating Point Numbers l-22

1.5 Instruction Format. 1-22.1 I
1.6 Effective Address Calculation 1-25

Extended Addresses 1-26

1.7 KLlO Memory. 1-31

Memory Characteristics l-32

1.8 KS10 Memory 1-34
1.9 Programming Conventions. 1-35
1.10 KIlO and KAlO Characteristics l-38

Memory l-39

Chapter 2 lJser Operations

2.1 Full Word Data Transmission 2-3

Move Instructions 2-3
Double Move Instructions 2-6
Block Transfers 2-3

2.2 Fixed Point Arithmetic 2-11

Single Precision Instructions 2-12
Double Precision Instructions 2-15

. . .
111

2.3

2.4
2.5
2.6
2.7
2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15

2.16

2.17

Floating Point Arithmetic 2-17

Single Precision with Rounding 2-19
Single Precision without Rounding 2-21
Standard Range Double Precision 2-23
Expanded Range Double Precision 2-25
Number Conversion 2-27
Scaling 2-28.5
KAlO Software Double Precision 2-28.6

Boolean Functions 2-32

Shift and Rotate. 2-38
Arithmetic Testing. 2-41
Logical Testing and Modification. 2-47

Half Word Data Transmission 2-55

Program Control. 2-62

The Execute Instruction 2-63
Conditional Jumps. 2-64
Program Flags. 2-65
The JRST Instruction 2-70
Subroutine Calling. 2-74
Overflow Trapping. 2-78

Stack Operations 2-79

Byte Manipulation. 2-85
String Manipulation 2-90

Decimal Conversion 2-98

String Editing 2-104

Programming Examples 2-l 11

Processor Identification 2-l 11
Parity. 2-112
Reversing Order of Digits 2-115
Counting Ones. 2-116
Number Conversion 2-118
Table Searching 2-119
Extended Addressing. 2-120

Unimplemented Operations 2-122

MUUOs 2-123

KS10 Input-Output Instructions 2-126 - .__
2.18 Pre-KS10 Input-Output Instructions D 2-130
2.19 User Programming e _ ~ . L . 2-135

Chapter 3 KLlO System Operations

3.1 PriorityInterrupt D3-2

Interrupt Requests. ~ ~ . _ 1 . . . 3-3
Interrupt Functions and Instructions . . D _ _ . . . 3-5
Interrupt Programming . . _. _ . ~ . D 3-8

3.2 Cache Management e . _ _ . . 3-11

Cache Programming _ . . . ~ . _ , . . D . s . D a . ~ 3-13

iv

Chapter 1

Introduction

A DECsystem-10 or DECSYSTEM-20 is a general purpose, stored program
computing system that includes at least one PDP-10 central processor, a
memory with error-checking capability, and a variety of peripheral equip-
ment. Each central processor is the control unit for an entire large-scale
subsystem, in which it is connected by buses to random access storage
modules and peripheral equipment, some of which may be shared with
other central processors. Within a given system the central processor
governs ail peripheral equipment, either directly or indirectly, sequences
the program, and performs all arithmetic, logical and data handling opera-
tions. But a given system may also contain other kinds of processors. A
system based on the KLlO central processor contains a small PDP-11 front
end processor; this acts as the system console and may also handle commu-
nications equipment and the unit record peripheral equipment via a Un-
ibus. The DECSYSTEM-2020, the only system based on the KS10 proces-
sor, contains a microprocessor for handling console functions (with a termi-
nal), and all of its peripheral equipment is handled over two or more
Unibuses. Earlier model central processors have manual consoles and han-
dle unit record equipment directly via an in-out bus. A system may also
include direct-access processors, which have much more limited program
capability and serve to connect large, fast peripheral devices to memory
bypassing the central processor. Every direct-access processor is connected,
for control purposes, to some central processor, to which it appears as a
peripheral device. The direct-access processor is also connected to its pe-
ripheral equipment by a device bus, and to memory either directly by its
own memory bus or via a channel bus through the memory control part of
the central processor. A DECSYSTEM-2020 cannot include direct access
processors, but the Unibus adapters themselves have much of the capabil-
ity of su.ch processors: in particular an adapter can gain direct access to
memory via the same KS10 system bus used by the processor. A system

l-l

may also contain peripheral subsystems, such as for data communications,
which are themselves based on small computers; from the point of view of
the PDP-11, such a subsystem in toto is regarded as a peripheral device.
Unless otherwise specified, the words ‘tprocessor” and “central processor”
refer to the large scale PDP-10 central processor.

At present there are four types of PDP-10 central processors, the
KLlO, the KSlO, the KIlO, and the KAlO. The first, which exists in two
versions, with and without extended addressing, is the fastest and most
powerful, having the largest instruction set including string manipulation,
double precision in both fixed point and floating point, and in later ma-
chines, expanded range floating point. The KS10 lacks expanded range
floating point, lacks extended addressing, and is slower than the KLlO; but
it otherwise has the maximum instruction set, and it is considerably less
expensive. All processors handle words of thirty-six bits. Earlier memories
store these with a parity bit for detecting single-bit errors. In the newest
MOS memories, available with the KLlO and KSlO, each word is accompa-
nied by a 7-bit code for correction of single errors and detection of double
errors. Maximum memory capacity depends upon the physical addressing
capability of the processor. However the physical capacity of the memory is
not particularly relevant to a typical user programmer, as all recent proces-
sors are structured to operate in a sophisticated virtual memory environ-
ment. The fundamental virtual address is thirty bits, although no present
processor is capable of using all of them. The virtual memory space is
divided into sections of 256K each, whose locations are specified by the
right eighteen address bits (the “in-section” address). Paging hardware fur-
ther divides each section into 512 pages of 512 locations each. The actual
size of the virtual address space for,a given processor depends on how many
out of the twelve possible section bits it implements. The addressing char-
acteristics of the various processors are these.

Physical address
(number of bits)

Physical memory capacity
(number of locations)

Section bits implemented

Number of sections

Virtual address
(number of bits)

Virtual address space
(number of locations)

Extended
KLlO

22

4096K

5

32

23

8192K

Single-
section
KLlO

22

4096K

0

1

18

256K

KS10 KIlO KAlO

20 22 18

512K 4096K 256K

0 0 0

1 1 1

18 18 18

256K 256K 256K

-

In an Extended KLlO whose operating system supports extended address-
ing only in executive address space, user space is the same as that in a
single-section KLlO.

l-2 Introduction June 1982

The extended KLlO, by using five section bits, has a virtual memory
twice the size of the maximum physical memory. All other processor config-
urations currently use only the l&bit in-section address, so all access is
defined as being in section 0. This means that the KS10 has a physical
memory that can be twice as large as the virtual space available to a single
program; and the single-section KLlO and the KIlO can have a physical
memory sixteen times as large. A virtual limitation of 256K is seldom
critical however, as these processors, like the extended KLlO, have features
that allow for dynamic paging and working set management. KAlO mem-
ory management is limited to a basic one- or two-part protection and reloca-
tion scheme.

The bits of a word are numbered O-35, left to right (most significant to
least significant), as are the bits in the registers that hold the words. The
KLlO can also handle half words, doublewords, bytes, and strings.

Half words are simply the two halves of a word, wherein the left half is
bits O-17, the right half, bits 18-35. In operations on half words, the two
halves of a given word are handled independently; e.g. when both are
incremented, no carry from right to left can occur (this is not true on the
KAlO, where incrementing both halves is done by adding 1000001 to
the entire word).

A doubleword is two adjacent words treated as a single 72-bit entity,
where the word with the lower address is on the left. In some operations,
such as the product in double precision multiplication, this concept is
extended to multiple length operands involving more than two consecu-
tive words. The direction from more to less significance is always from
lower to higher addresses. (The KAlO cannot handle doublewords, ex-
cept to the limited extent of double length products and dividends.)

A byte is any contiguous set of bits within a word. It is identified by a
byte pointer.

A string is a sequence of bytes packed into and encompassing an arbi-
trary number of words. It is defined by its length in number of bytes and
an initial value for a pointer that is incremented automatically for han-
dling the bytes. (Both KIlO and KAlO lack string hardware.)

Begisters specifically for holding addresses have a number of bits ap-
propriate to the type of processor and whether the address is physical or
virtual. Address bits are numbered according to the right-justified position
of an address in a word. Thus the bits of an in-section address are numbered
18-35, and those of a 22-bit physical address are numbered 14-35. Words
are used either as instructions in the program, as addresses, or as operands
(data for the program).

Most of this introductory chapter is oriented toward a DECsystem-10
or DECSYSTEM-20 based on a KLlO processor, in both its single-section
and extended forms, or a DECSYSTEM-2020, which is based on the KS10
processor. 001.1 and 1.7 apply only to the KLlO, and POl.2 and 1.8 apply
only to the KSlO. Much of the information for the KLlO applies also to
systems based on the KIlO and KAlO. The final section of the chapter
explains the ways in which those earlier processors differ from the architec-
ture defined in the preceding sections. P1.3 is probably of interest only to
system programmers.

Introduction l-3

1 .l Kbl O-based System Organization

The illustrations on the next three pages show the organization of the two
types of computer systems based on the KLlO central processor and the
internal organization of that processor. A KLlO-based system is effectively
a group of processors organized around an E or execution bus. The other
processors (controllers, interfaces) generally act at the direction of the cen-
tral processor but carry out those actions independently of it.

On the E bus of a DECSYSTEM-20 there may be up to four DTEBO
interfaces, each of which connects to a PDP-11 front end processor, and up
to eight RH20 Massbus controllers (Figure 1.1). An RH20 handles disks or
tapes via a Massbus; although fundamentally under control of the KLlO,
the RH20 operates from its own command list in memory and uses a sepa-
rate C or channel bus for data transfers to and from internal memory via
the M box, bypassing the E box. All DECSYSTEM-20 memory is internal:
the memory controllers with their storage modules are connected directly
to the S or storage bus, and access to them is possible only through the M
box.’ Unit record equipment, such as line printers and card readers, and
communication subsystems are handled by PDP-11 front end processors.
The data path to memory for these is via the E bus, but it uses automatic
features of the priority interrupt, thus interfering minimally with the
KLlO program. Among the front end processors, one is master: it acts as
the system console, bootstraps the system by loading the KLlO microcode
from disk, and is also the system diagnostic facility (for which it has a
direct connection to one of the disks on the RH20).

Figure 1.2 shows a typical DECsystem-10 based on a KLlO. In terms of
memory and peripherals, such a system is much like a KIlO-based
DECsystem-10, but it has the faster and more powerful central processor.
Here external memory is on a KIlO memory bus interfaced to the S bus by
a DMA20, and the peripherals are on a KIlO in-out bus interfaced to the E
bus by a DIA20. Massbus devices are handled by an RHlO, which main-
tains a direct path to external memory by way of a data channel. Such a
system generally has only one front end processor, which acts as the console
and diagnostic facility, and bootstraps the microcode from disk or DECtape.
One version of the DECsystem-10 is more of a hybrid 10-20: a machine in
the 1090 series has KIlO memory and in-out buses, but uses the RH20
Massbus controller, which is right on the E bus and maintains a path to
external memory by way of the C bus through the M box.

There are also two versions of the operating system for use with the
KLlO: the TOPS-20 Monitor and the TOPS-10 Monitor. The Extended
KLlO with both user and executive space extended is available only in
TOPS-20 systems. In a TOPS-10 system, an Extended KLlO can have
extended addressing only in executive space, and for this it must run micro-
code version 271 or greater (in which case, the TOPS10 Monitor actually
uses so-called “TOPS-20 paging”). In other words an Extended KLlO, re-
gardless of Monitor, has TOPS20 paging; in a single-section KLlO the
paging always matches the Monitor.

1 MOS and core memory cannot be mixed on the same bus. If the system includes both, there
must be two S buses.

l-4 Introduction June 1982

Figure 1.1: KLlO-based DECSYSTEM-20

1

M BOX

E BOX

KLlO
.J

t

PROCESSOR , 4 ,

MAZO, MB20 OR MFZO
INTERNAL CONTROLLER
AND STORAGE MODVLES

C BUS

t

----_

l I- MASSBUS ----
CONTROLLER

E BUS

DTEZO
POP 11 POP 11

INTERFACE
PROCESSOR MEMORY

,
4 4

r- CONSOLE

TERMINAL

FLOPPY

Introduction l-5

Figure 1.2: KLlO-based DECsystem-10

DMA 20
KllO

MEMORY BUS
I I _---

CONTROLLER
MEMORY BUS

S BUS

M BOX

E BOX

KLlO

PROCESSOR

KllO IN-OUT BUS t --

L

DIAZO

IN OUT BUS

CONTROLLER

E BUS I ---

LINE

PRINTER

CARD

READER

MEMORY

CONSQLE

TERMINAL 3 DECTAPE

COMMUNICATION

SUBSYSTEM

-

l-6 Introduction

Figure 1.3: KLlO Processor Simplified

c BUS s BUS

r M BOX I ~~~---~~ + ---
1

*-
CHANNEL MEMORY _ 2K

CONTROL CONTROL CACHE

I t t t

PAGER P
FAST

- MEMORY .

8b 16% 37

b

VMA

SECTION 2 :j
& , . t t

13 1718 b t 35

*

ARITHMETIC

b LOGIC *

IAD. AR, ETCI

PC *

SECTION , 23

13 17 18 .< 5

CONTROLLER

I
I

METERS
ERROR

LOGIC

PRIORITY

INTERRUPT

t

I
I
I
I
I
I
I

1
I
I
I
I
I

I E BUS

I
I
I
I
I

Introduction l-7

The KLlO Processor

Figure 1.3 shows the internal configuration of the KLlO processor. Of the
registers shown, only PC, the program counter, is directly relevant to a
typical user. The processor performs a program by executing instructions
retrieved from the memory locations addressed by PC. For the normal pro-
gram sequence, PC is regularly incremented by one so that instructions are
taken from consecutive locations. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction, or by replacing its contents with the value specified by a
jump instruction. Throughout the text the phrase ‘ljump to location n”
means to load the value n into PC, and continue performing instructions in
the normal counting sequence beginning at the location then specified by
PC. Physically PC is not a counter at all - it just holds the program count,
and the actual counting is done in the virtual memory address register
VMA. The entire VMA functions as a counter, but no carry is allowed into
the section part in program counting. Hence large data structures can arbi-
trarily cross section boundaries but the program cannot. The program
count wraps around in the current PC section, which is specified by PC bits
13-17. For the program to go from one section to another requires an ex-
plicit transfer of control by jumping to another section. In a single-section
KLlO all section bits are held at zero, so VMA and PC function as l&bit
registers. The virtual address from VMA, whether eighteen bits or twenty-
three, is translated by the pager to a 22-bit physical address that is sup-
plied to memory via PMA.

Each instruction retrieved from memory contains information identify-
ing the operands and an instruction code specifying the operation to be
performed using those operands. The code goes to the instruction register
IR, from which it is decoded by the microcontroller, which in turn performs
the instruction by manipulating all of the other E box elements and mak-
ing the necessary requests to the M box. The microcontroller also executes
the more fundamental operations of sequencing the program, handling
TOPS-20 paging operations beyond the basic address translation made by
the pager (TOPS-10 operations are built into the M box pager), processing
interrupts, and so forth. (Not shown in the illustration is a multitude of
control lines emanating from the microcontroller and extending throughout
the machine.) The microcontroller operates from a microcode contained in a
control store. This microcode bears the same relation to the microcontroller
as the program does to the processor. But microprocessing is invisible to the
programmer, and he need not be concerned with the microcode except to the
extent of loading it at system initialization. The reader should however
note an important implication of this type of processor implementation: a
single KLlO processor can actually be a number of different processors
merely by loading different microcodes.

The major working area of the processor is the arithmetic logic. This
contains three full-word registers, arithmetic register AR, buffer register
BR, and multiplier-quotient register MQ, the first two of which have 36-bit
right extensions, ARX and BRX, for handling double length operands. Var-
ious combinations of these registers play a role in all arithmetic, logical
and data handling operations, and in program control operations as well.

l-8 Introduction

Also included in the arithmetic logic are an extremely fast double length
adder AD-ADX, and smaller registers that handle floating point exponents
and control shift operations and byte manipulation But like the microcon-
troller, the arithmetic logic can be disregarded. Almost all of the operations
necessary for the execution of a program are performed in it, but it never
retains any information from one instruction to the next. Computations
either affect control elements such as PC and the program flags, or produce
results that are stored and must be retrieved if they are to be used as
operands in other instructions. The program flags detect conditions of inter-
est to the programmer, such as arithmetic and stack overflow, which can
cause program traps.

An instruction word has only one l&bit address field for addressing
any location in the current PC section But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second operand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as
though it were a result held over in the processor from some previous in-
struction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the l&bit address field, or to both). Every instruction has a
4-bit index register address field, which can address fifteen of these loca-
tions for use as index registers in modifying a memory address (a zero index
register address specifies no indexing). Although all computations on both
operands and addresses are performed in the arithmetic logic, the computer
actually has sixteen accumulators, fifteen of which can .double as index
registers. The factor that determines whether one of the first sixteen loca-
tions in memory is an accumulator or an index register is not the informa-
tion it contains nor how its contents are used, but rather how the location is
addressed. These first sixteen locations are not actually in the storage mod-
ules - they are in a fast memory contained in the processor. This allows
much quicker access to these locations whether they are addressed as accu-
mulators, index registers or ordinary memory locations. They can even be
addressed from the program counter, and provision is made for referencing
them from nonzero sections. Moreover there are actually eight of these fast
memory blocks (also referred to as “AC blocks”), but generally only one is
available to a program at any given time. Blocks 6 and 7 are reserved
specifically for the microcode; the Monitor usually assigns block 1 to user
programs and reserves the others for itself.

An optional feature that speeds up memory access and increases the
efficiency of storage module use is a cache. This facility has 2048 locations
that temporarily substitute for a selection of the most frequently used stor-
age locations. Hence the cache may be regarded in some respects as a set of
general purpose registers. A program loop once read from storage and then
resident in the cache may be executed hundreds of times without further
instruction fetches from storage. Data produced by the program is written
in the cache. Thus if the program sets up a location to be a counter, that
location may be read and written thousands of times with no storage access,
even initially. When the cache is present but does not contain the word the
program wants, memory control gets a group of four adjacent words from
storage, including the requested one, and places them in the cache, on the

June 1982 Introduction l-9

assumption the program will probably want the other three and can thus
get them more quickly. This is a reasonable assumption, since the program
counts sequentially and data manipulation is frequently sequential as well.
Cache control has a mechanism for determining frequency of use, and it
writes the least recently used word groups back into storage (or discards
them if unchanged) when the cache space is needed for new references. The
only address restriction on the 512 4-word groups is that the cache can have
the same groups from at most four pages. There may be complete pages in
the cache, but it is more likely to have a selection of groups from a selection
of pages depending on frequency of use. Generally the cache contains words
for the current user and for the Monitor, as well as for handling interrupts
for many users. The reader should be aware that the cache contains repre-
sentations of memory word groups, not necessarily the actual storage con-
tents. For example, when the program writes a word, the contents of that
cache location then differ from the contents of the corresponding storage
location and the other words in the group may not even be in the cache.
This caution is of interest however only to the operating system: a typical
program simply makes memory references, and the more of these in which
the cache substitutes invisibly for storage, so much the better.

Also included within the processor are a number of internal devices
that are similar to external controllers in that they operate independently
of the program but are controlled by it over the E bus. Some of these have
already been mentioned: the program sets up the pager, instructs cache
control to update storage, sets up the memory system, and gets diagnostic
information from the memory controllers and storage modules. Other such
“devices” are the error logic, the meters, and the priority interrupt. By
means of the error logic, the program can monitor conditions in the proces-
sor. The meters provide a time base, an interval counter, and facilities for
keeping track of program use of the system and analyzing system perform-
ance. The interrupt facilitates processor control of the entire system by
means of a number of priority-ordered levels over which external signals
may interrupt the normal program flow. The’ processor acknowledges an
interrupt request by executing the instruction contained in a particular
location for the level or doing some special operation specified by the device
(such as incrementing the contents of a memory location). Assignment of
levels to devices is entirely under program control. Two of the devices to
which the program can assign levels are the error logic and the interval
counter.

l-10 Introduction

1.2 KS1 O-based System Organization

Figures 1.4 and 1.5 show the organization of the newest member of the
DECSYSTEM family - the DECSYSTEM-2020 and the KS10 processor
used in it. The overall system (Figure 1.4) comprises a number of major
units or subsystems that communicate with one another over a bus built
into the backplane. The minimal system has five subsystems: processor,
MOS storage, console, and two in-out subsystems, each based on a Unibus.
One Unibus adapter handles the disk system, the second handles all other
peripheral equipment. Depending on the device, these adapters can make
direct access to storage or request that the processor handle the transfer via
the program. The console, which is based on a microprocessor, boots the
system from disk and handles interaction of the operator or a remote diag-
nostic link with the other subsystems. The backplane bus and most other
full word data paths are actually thirty-eight bits, having a parity bit for
each half word. The system can run under either the TOPS-20 or TOPS-10
Monitor.

Figure 1.4: DECSYSTEM-2020

KS10 BACKPLANE BUS

f

1

FIRST

UNIBUS

ADAPTER

UNIBUS

DISK

SYSTEM

i

SECOND

UNIBUS

ADAPTER

I
rl CONSOLE PROCESSOR

OPERATOR
REMOTE

TERMINAL
DIAGNOSTIC

LINK

STORAGE

CONTROLLER

WITH 2-8

64K MODULES

UNIBUS

t t t t

Introduction l-11

Figure 1.5: KS10 Processor Simplified

-

KS10 BACKPLANE BUS

-
BUS 4

TRANSCEIVERS 1
. b

RAM FILE

1777

1000
777

WORKSPACE

200

177

0
1 Kx38

1 .

I PROGRAM

FLAGS

ARITHMETIC UNIT

ARITHMETIC LOGIC

AND REGISTER FILE

(PC,AR,ETC.)

-_i- 18

-I MICRO

CONTROLLER I

1-12 Introduction

-

Of the elements shown in the processor illustration (Figure 1.5), only
fast memory, the program flags, and the program counter PC are directly
relevant to a typical user. The processor performs a program by executing
instructions retrieved from the memory locations addressed by PC. For the
normal program sequence, PC is regularly incremented by one so that in-
structions are taken from consecutive locations. Sequential program flow is
altered by changing the contents of PC, either by incrementing it an extra
time in a skip instruction, or by replacing its contents with the value
specified by a jump instruction. Throughout the text the phrase ‘ljump to
location n” means to load the value n into PC, and continue performing
instructions in the normal counting sequence beginning at the location
then specified by PC. Physically PC is not a counter at all - it is a register
in the register file (described below). This register just holds the program
address, and the actual counting is done by the arithmetic logic, which
wraps the count around in eighteen bits because the virtual space is limited
to section 0. Addresses from PC, or calculated by the arithmetic logic, go to
the virtual memory address register VMA. Each virtual storage address
from VMA is translated by the pager to a 20-bit physical address that is
supplied to the storage subsystem via the bus. VMA actually has twenty-
two bits, for handling not only physical storage addresses, but addresses for
other types of bus transactions: with the console, in-out equipment, mem-
ory status.

Each instruction retrieved from memory contains information identify-
ing the operands and an instruction code specifying the operation to be
performed using those operands. The code goes to the instruction register
IR, from which it is decoded by the microcontroller, which in turn performs
the instruction by manipulating all of the other processor elements and
making the necessary requests for bus transactions. The microcontroller
also executes the more fundamental operations of sequencing the program,
handling paging operations beyond the basic address translation made by
the pager, processing interrupts, and so forth. (Not shown in the illustra-
tion is a multitude of control lines emanating from the microcontroller and
extending throughout the machine.) The microcontroller operates from a
microcode contained in a control store. This microcode bears the same rela-
tion to the microcontroller as the program does to the processor. But mi-
croprocessing is invisible to the programmer, and he need not be concerned
with the microcode except to the extent of loading it at system initializa-
tion. The reader should however note an important implication of this type
of processor implementation: a single KS10 processor can actually be a
number of different processors merely by loading different microcodes.

The major working area of the processor is the arithmetic unit. Central
to this unit is a set of ten 4-bit microprocessor slices, which together con-
tain the full word arithmetic logic and a file of ten registers. The register
file includes, besides PC, the arithmetic register AR, other associated regis-
ters used in manipulating data and performing arithmetic and logical oper-
ations, and registers that contain system addresses, status information and
constants. The arithmetic logic includes a full word adder, shifter and
mixers. It also contains complete lo-bit logic for direct manipulation of
floating point exponents and standard 7-bit bytes, and also for controlling

Introduction 1-13

shifting and operations on bytes of other sizes. Multiple length operands
are handled by separately manipulating their higher and lower order words
using the registers in the file. But like the microcontroller, the arithmetic
unit (except for PC) can be disregarded by the user. Almost all of the opera-
tions necessary for the execution of a program are performed in it, but it
never retains any information from one instruction to the next. Computa-
tions either affect control elements such as PC and the program flags, or
produce results that are stored and must be retrieved if they are to be used
as operands in other instructions. The program flags detect conditions of
interest to the programmer, such as arithmetic and stack overflow, which
can cause program traps. (Several registers in the file do retain information
of interest to the system programmer however.)

An instruction word has only one l&bit address field for addressing
any location in the virtual space. But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second operand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as
though it were a result held over in the processor from some previous in-
struction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the H-bit address field, or to both). Every instruction has a 4-
bit index register address field, which can address fifteen of these locations
for use as index registers in modifying a memory address (a zero index
register address specifies no indexing). Although all computations on both
operands and addresses are performed in the arithmetic unit, the computer
actually has sixteen accumulators, fifteen of which can double as index
registers. The factor that determines whether one of the first sixteen loca-
tions in memory is an accumulator or an index register is not the informa-
tion it contains nor how its contents are used, but rather how the location is
addressed. These first sixteen locations are not actually in the storage mod-
ules - they are in a fast memory contained in the processor. This allows
much quicker access to these locations whether they are addressed as accu-
mulators, index registers or ordinary memory locations. They can even be
addressed from the program counter. Moreover there are actually eight of
these fast memory blocks (also referred to as “AC blocks”), but generally
only one is available to a program at any given time. Block 7 is reserved
specifically for the microcode; the Monitor usually reserves block 0 for itself
and assigns the others to user programs.

A feature that speeds up memory access and increases the efficiency of
storage module use is a virtual cache. This facility has 512 locations that
duplicate the contents of storage locations in current use in the virtual
address space of the program. Every time a word is read from storage or
written in storage, it is also written in the cache location selected by the
right nine virtual address bits, which represent position within the virtual
page. Provided there is no intervening reference to the same position in
some other page, a subsequent read reference to the same virtual location
can be made to the cache (referred to as a “cache hit”) instead of going over
the bus to storage. A program loop once read from storage and then resi-
dent in the cache may be executed hundreds of times without further in-

.-

1-14 Introduction

struction fetches from storage; and data produced by the program can be
retrieved without requiring bus transactions. To a great extent the cache is
also invisible: a typical program simply makes memory references, and the
more of these in which a word is read from the cache instead of storage, so
much the better. However a program that tends to settle in one virtual
page at a time, instead of alternating references among a number of pages,
will maintain a much higher cache hit rate, saving considerable time.

Fast memory and the cache are contained respectively in the bottom
128 and top 512 locations in a RAM file in the processor. The remaining
384 locations are a workspace used by the microcode as a scratch pad, and
used for handy storage of various system quantities and constants that
expedite the execution of the more complicated instructions. Also included
within the processor are several elements, such as the pager already men-
tioned, that are similar to external controllers in that they operate inde-
pendently of the program but are controlled by it. The timer provides a
time base and an interval counter. By means of the system flags, the pro-
gram can monitor various conditions throughout the system, and can inter-
rupt the console or be interrupted by it. The interrupt facilitates processor
control of the entire system by means of a number of priority-ordered levels
over which external signals may interrupt the normal program flow. The
processor acknowledges an interrupt request by executing the instruction
contained in a particular location for the level or the source of the request.
Assignment of levels is entirely under program control. Two levels can be
assigned to each Unibus adapter, and one can be assigned to the system
flags.

1.3 Timesharing

Inherent in the machine hardware are restrictions that apply universally:
only certain instructions can be used to respond to a priority interrupt, and
certain memory locations have predefined uses. But above this fundamen-
tal level, the timeshare hardware provides for different modes of processor
operation and establishes certain instruction and memory restrictions so
that the processor can handle a number of user programs (programs run in
user mode) without their interfering with one another. The memory restric-
tions are dependent to a great extent on the type of processor, but the
instruction restrictions are not, and these are relatively obvious: a program
that is sharing the system with others cannot usually be allowed to halt the
processor or to operate the in-out equipment arbitrarily (unrestricted in-out
with a limited number of devices is allowed for special real time applica-
tions). A program that runs in executive mode - the Monitor - is respon-
sible for scheduling user programs, servicing interrupts, handling input-
output needs, and taking action when control is returned to it from a user
program. Any violation of an instruction or memory restriction by a user
transfers control back to the Monitor. Dedication of the entire facility to a
single purpose, in other words with only one user, is equivalent to operation
in executive mode.

The paging hardware maps pages from the virtual address space into
pages anywhere in physical memory. A page map for each program speci-

Introduction 1-15

fies not only the correspondence from vitrual address to physical address,
but also whether an individual virtual page is accessible or not, alterable or
not, and whether the cache can be used for references to it. In the KLlO and
KIlO, both user and executive modes are subdivided according to whether
the program is running in a public area or a concealed area; these areas are
distinguished by whether or not their pages are labeled public. Within user
mode these submodes are public and concealed; within executive mode they
are supervisor and kernel. A program in concealed mode can reference all
of accessible user memory, but the public program cannot reference the
concealed area except to transfer control into it at certain legitimate entry
points. The concealed area would ordinarily be used for proprietary pro-
grams that the user can call but cannot read or alter. In the KS10 all pages
may be regarded as concealed, as none are labeled public; but in reality the
concept of public us concealed simply does not apply. KS10 executive mode
is identical to kernel mode in that supervisor restrictions do not exist. In
this treatment of timesharing, any mention of public as against private is
irrelevant to the KSlO, and functions indicated as being performed by the
kernel or supervisor program are all handled by the KS10 executive.

In kernel mode the Monitor handles the in-out for the system, handles
priority interrupts, constructs page maps, and performs those functions
that affect all users. This mode has no instruction restrictions and the
program can even turn off the pager to address memory directly, using
physical addresses; the address space is then said to be unpaged. In paged
address space, individual pages may be restricted as inaccessible or write-
protected, but it is the kernel program that establishes these restrictions.
In supervisor mode the Monitor handles the general management of the
system and those functions that affect only one user at a time. This mode
has essentially the same instruction and memory restrictions as user mode,
although the supervisor program can read, but not alter, the concealed
areas; in this way the kernel mode Monitor supplies the supervisor pro-
gram with information the latter cannot affect, even though the locations
are not write-protected in kernel mode. The kernel program generally as-
signs fast memory block 0 for ordinary use by the Monitor in either mode
(especially in a TOPS-10 system - to be compatible with the KIlO where
the hardware requires it). Typically, the Monitor assigns block 1 to all
users and uses blocks 2 and 3 for handling interrupts (e.g. block 2 just for
the highest priority level and block 3 for the others).

The most extensive hardware features for timesharing exist in the
KLlO and KIlO. The reason for this is that the newest software is much
more sophisticated and thus requires less hardware to do the job - a fact
that the KS10 takes advantage of to cut cost. An example of the use of the
most extensive timeshare hardware is illustrated in Figure 1.6. This draw-
ing shows the layout of a single-section KLlO address space that is config-
ured to make full use of the various modes, to be used with a TOPS-10
Monitor, and to be compatible with earlier machines The space is 256K,
made up of 512 pages numbered O-777 octal. Any program can address
locations O-17 as these are in fast memory and are completely unrestricted
(although the same addresses may be in different blocks for different pro-

1-16 Introduction June 1982

Figure 1.8: Possible TOPS-10 Virtual Address Space Configuration

PUBLIC

Or====7
PUBLIC

WRITEABLE

PUBLIC

WRITE -PROTECTED

771

SMAOCC’ AMAS AM INACCESSIBLE

401

711

CONCEALED
FAST YEYORV

PUBLIC
WRITEABLE

CONCEALED
WRlTEA8LE

PUBLIC

WRITE-PROTECTED

CONCEALED

WRITE-PROTECTED

14(

401

SUPERVISOR

EXECUTIVE MODE

KERNEL
0

CONCEALED
WRITE-PROTECTED

PUBLIC
.-------_

CONCEALED i

_

t

PUBLIC
-------_

CONCEALED

WRITE- PROTECTED

CONCEALED

PUBLIC

WRITEABLE

PUBLIC

WRITE-PROTECTED

I CONCEALED
WRITEABLE

CONCEALED

WRITE-PROTECTED

Introduction l-17

grams). The public user program operates in the public area, part of which
may be write-protected. The public program cannot access any locations in
the concealed areas except to fetch instructions from prescribed entry
points The concealed user program has access to both public and concealed
areas, but it cannot alter any write-protected location whether public or
concealed, and fetching an instruction from the public area automatically
returns the processor to public mode. In a TOPS-20 system, an area labeled
“write-protected” might better be called “copy on write.” Write protection is
generally for pure code shared by a number of users. If one user attempts to
alter it, the TOPS-20 Monitor will ordinarily make a separate copy for him
in his alterable space, and keep the write-protected copy for the remaining
users

In our example write-protected user pages are in the high address half
of the space for compatibility with the two-part protection and relocation
scheme of the KAlO. We define the supervisor program as confined to pages
340 and above, even though there is actually nothing to prevent it from
reading that part of the kernel program shown in the lower numbered
pages The reason for specifying it this way is for compatibility with the
KIlO, where the bottom 112K of executive space is unpaged and accessible
only in kernel mode. Part of the executive public area may be write-
protected, and even though the supervisor can read concealed information,
it cannot change a concealed location whether write-protected or not. For
executive concealed areas, the distinction of writable as against write-
protected applies only to kernel mode. As in the case of concealed user
mo’de, when the kernel program fetches an instruction from a public area
the processor returns to supervisor mode. With TOPS-10 paging, pages
340-377 constitute the per-process area, which contains information spe-
cific to individual users and whose mapping accompanies the user page
map. In other words the physical memory corresponding to these virtual
pages can be changed simply by switching from one user to another, rather
than the Monitor changing its own page map.

In executive space of an extended KLlO, the interrupt code must be in
section 0. The rest of the executive program is usually in section 1, but the
two sections are mapped identically, so a given in-section address in either
refers to the same physical location Even with an extended user space, a
single-section user program would ordinarily be run in section 0 for com-
patibility with an unextended space. For the multisection case, the pro-
gram might be in section 1, special tables in section 2, and a large data
structure, such as an immense matrix, might occupy sections 10-12. In
terms of instructions implemented and procedures used, the KS10 acts like
an extended processor that is confined to section 0.

To manage the system effectively, the Monitor keeps a special table for
each process in each processor. These process tables are defined in physical
memory; each requires a single page whose whereabouts must be specified
by the Monitor, which keeps an executive table for itself and a user table
for each user. With TOPS-10 paging, the first half of the table holds the
page map for the process; with TOPS-20 paging, the process table contains
a table of section pointers to page maps for whatever sections are in
use. The hardware defines the use of many other locations in the process

1-18 Introduction June 1982

tables, especially in the KLlO: these include locations that hold trap and
interrupt instructions, control blocks for channels and front end processors,
and various quantities associated with paging and the meters. Of course in
the KS10 there are no control blocks as there are no channels or front end
processors; moreover timing information and many of the words associated
with paging are kept in the workspace instead of the process tables. Parts
of a process table not used by or set aside for the hardware are available to
the software. In each user process table the Monitor generally keeps a stack
for use with the process, job tables, and various user statistics such as
memory space and billing information. In the text the phrase “user process
table” refers to the table currently specified by the Monitor as the one for
the user even if that user is not currently running.

1.4 Number System

A program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate l&bit
numbers. The PDP-10 repertory includes instructions that add or subtract
one from both halves of a word, so the right half can be used for address
modification when the word is addressed as an index register, while the left
half is used to keep a control count.

The fixed-point arithmetic instructions use twos complement represen-
tations to do binary arithmetic. In a word used as a number, bit 0 (the
leftmost bit) represents the sign, 0 for positive, 1 for negative. In a positive
number the remaining thirty-five bits are the magnitude in ordinary bi-
nary notation. The negative of a number is obtained by taking its twos
complement. If x is an n-digit binary number, its twos complement is
2” - X, and its ones complement is (2” - 1) - X, or equivalently
(2” - X) - 1. Subtracting a number from 2” - 1 (i.e. from all 1s) is equiv-
alent to performing the logical complement, i.e. changing all OS to 1s and
all Is to OS. Therefore, to form a twos complement one takes the logical
complement (usually referred to merely as the complement) of the entire
word including the sign, and adds 1 to the result. In a negative number the
sign bit is 1, and the remaining bits are the twos complement of the magni-
tude.

+153,, = +731, = 000 000 000 000 000 000 000 000 000 0 IO 0 1 1 00 I __
0 3 5

-153,,, = -331, = Ill 111 111 111 III Ill Ill Ill III 101 100 III

0 .J 5

A twos complement addition actually acts as though the words repre-
sented 36-bit unsigned numbers, i.e. the signs are treated just like magni-
tude bits. In the absence of a carry into the sign stage, adding two numbers
with the same sign produces a plus sign in the result. The presence of a
carry gives a positive answer when the summands have different signs. The
result has a minus sign when there is a carry into the sign bit and the
summands have the same sign, or the summands have different signs and
there is no carry. Thus the program can interpret the numbers processed in

Introduction 1-19

fixed point addition and subtraction as signed numbers with thirty-five
magnitude bits or as unsigned 36-bit numbers. A computation on signed
numbers produces a result that is correct as an unsigned 36-bit number
even if overflow occurs, but the hardware interprets the result as a signed
number to detect overflow. Adding two positive numbers whose sum is
greater than or equal to 235 gives a negative result, indicating overflow; but
that result, which has a 1 in the sign bit, is the correct answer interpreted
as a 36-bit unsigned number in positive form. Similarly adding two nega-
tives gives a result which is always correct as an unsigned number in
negative form.

Zero is represented by a word containing all OS. Complementing this
number produces all Is, and adding 1 to that produces all OS again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation,
all even numbers both positive and negative end in 0, all odd numbers in 1
(a number all 1s represents -1). But since there are the same number of
numbers with each sign and zero has a plus sign, there is one more nega-
tive number than there are strictly positive numbers (nonzero numbers
with a plus sign). This is the most negative number and it cannot be pro-
duced by negating any positive number (its octal representation is 400000
000000 and its magnitude is one greater than the largest positive number).

If ones complements were used for negatives one could read a negative
number by attaching significance to the OS instead of the 1s. In twos com-
plement notation each negative number is one greater than the comple-
ment of the positive number of the same magnitude, so one can read a
negative number by attaching significance to the rightmost 1 and attach-
ing significance to the OS at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). In a negative integer, 1s may
be discarded at the left, just as leading OS may be dropped in a positive
integer. In a negative fraction, OS may be discarded at the right. So long as
only OS are discarded, the number remains in twos complement form be-
cause it still has a 1 that possesses significance; but if a portion including
the rightmost 1 is discarded, the remaining part of the fraction is now a
ones complement. Single precision multiplication produces a double length
product, and the programmer must remember that discarding the low order
part of a double length negative leaves the high order part in correct twos
complement form only if the low order part is zero.

The computer does not keep track of a binary point - the programmer
must adopt a point convention and shift the magnitude of the result to
conform to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers
represented by a single word is -235 to 235 - 1 or -1 to 1 - 2-35. Since
multiplication and division make use of double length numbers, there are
special instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension
of the single length format. The magnitude (or its twos complement) is the
70-bit string in bits l-35 of the high and low order words. Bit 0 of the high
order word is the sign, and bit 0 of the low order word is made equal to the

-.

l-20 Introduction

sign. The range for double length integers and proper fractions is thus -2”
to 2’O - land-ltol - 2-“. The double precision instructions actually use
quadruple length numbers for products and dividends. But numbers of any
length are just a further extension of the basic format: thirty-five addi-
tional bits of the number in each lower order word, and bit 0 made equal to
the sign Remember that truncating a multiple length negative requires an
adjustment for the twos complement unless the part discarded is zero. The
convention for bit 0 of lower order words is inconsistent with that used for
floating point format (see below). This does not affect the arithmetic in-
structions themselves, as they ignore bit 0 in all lower order words. How-
ever instructions that negate a doubleword use the floating point
convention. This means that if such instructions are used for fixed point
numbers, a problem could arise when comparing one double precision num-
ber with another.

Floating Point Numbers

The floating point instructions provide for conversion between fixed and
floating forms and handle both single and double precision floating point
numbers. The same format is used for a single precision number and the
high order word of a standard range double precision number. A floating
point instruction that handles numbers with the standard exponent range
(available in all machines) interprets bit 0 as the sign, but interprets the
rest of the word as an &bit exponent and a 27-bit fraction. For a positive
number the sign is 0, as before. But the contents of bits 9-35 are now
interpreted only as a binary fraction, and the contents of bits 1-8 are inter-
preted as an integral exponent in excess 128 (200R) code. Exponents from
-128 to + 127 are therefore represented by the binary equivalents of 0 to
255 CO-377J. Floating point zero and negatives are represented in exactly
the same way as in fixed point: zero by a word containing all OS, a negative
by the twos complement. A negative number has a 1 for its sign and the
twos complement of the fraction, but since every fraction must ordinarily
contain a 1 unless the entire number is zero (see below), it has the ones
complement of the exponent code in bits 1-8. Since the exponent is in
excess 128 code, an actual exponent x is represented in a positive number
by x + 128, in a negative number by 127 - x. The programmer, however,
need not be concerned with these representations as the hardware compen-
sates automatically. For example, for the instruction that scales the expo-
nent, the hardware interprets the integral scale factor in standard twos
complement form but produces the correct ones complement result for the
exponent.

+153,, = +23P, = + -462, X 2a

= 0j10001000]100 110010000000000000000000
0 1 us 35

-153,, = -231, = -.462,X 28

June 1982

= 101 110 III 011 001 110’000000000000000000
0 1 H9 35

Introduction l-21

The floating point instructions assume that all nonzero operands are
normalized, and they normalize a nonzero result. A floating point number
is considered normalized if the magnitude of the fraction is greater than or
equal to ‘/2 and less than 1. The hardware may not give the correct result if
the program supplies an operand that is not normalized or that has a zero
fraction with a nonzero exponent.

I

Single precision floating point numbers have a fractional range in
magnitude of Yz to 1 - 2-“, about eight significant decimal digits. Increas-
ing the length of a number to two words does not significantly change the
range but rather increases the precision; in any format the magnitude

I

range of the fraction is l/2 to 1 decreased by the value of the least significant
bit. With either precision the exponent range is -128 to + 127, giving a
decimal range of approximately 1.5 X lo-“” to 1.7 X 103’.

The precaution about truncation given for fixed point multiplication
applies to single precision floating point operations as they are done in
extra length; but the programmer may request rounding, which automat-
ically restores the high order part (the result) to twos complement form if it
is negative. In double precision floating point instructions, all operands and
results are double length, and all instructions calculate an extra length
answer, which is rounded to double length with the appropriate adjustment
for a twos complement negative. In double precision format the high order
word is the same as a single precision number, and bits 1-35 of the low

I

order word are simply an extension of the fraction, which is now sixty-two
bits, or over eighteen decimal digits. Bit 0 of the low order word is made 0
in a result but is ignored in all operands; e.g. the number 2’” + 2-l’ has this
two-word representation in standard range double precision format,

._-____.
oloolti-OH 100000000000000000000000000

0 I XL) 35

lo(oo 000 000 0 IO 000 000 000 000 000 000 000 000

0 I 3s

and its negative is

I- IO1 IO1 loololl III Ill III Ill 111’111 III Ill1

0 I x Y 3 s

011 III III II0000000000000000000000000
0 I 35

Expanded Range Floating Point Numbers. Most KLlOs have in-
structions for handling double precision floating point numbers with an
expanded exponent range. This is accomplished by using three more bits for
the exponent, thus increasing its range by a factor of eight at a cost of
losing only one significant decimal digit in precision. Numbers of this type
are referred to as being in “G format”, for consistency with the VAX termi-
nology (standard range single and double precision floating point corre-
spond to the VAX F and D formats). These instructions are present in any
KLlO with microcode version 271 or greater.

l-22 Introduction June 1982

A G format number is like a standard range double precision number
/ except that the high order word contains an 11-bit exponent and only the

.-
first twenty-four bits of the fraction In other words the fraction starts at bit
12, and the contents of bits l-11 are interpreted as an integral exponent in
excess 1024 (20008) code. Exponents from -1024 to + 1023 are therefore
represented by the binary equivalents of 0 to 2047 (O-37778), resulting in
this two-word representation for the number used in the preceding
example.

0 I 11 12 :x

loloo 000 000 000 010 000 000 000 000 000 000 0001
l. ’ I

0 1 3s

These numbers give a decimal range of approximately 2.8 x 10-“0” to
- 9 x 1o”O’.

1.5 Instruction Format

In the basic instruction format, the nine high order bits (O-8) specify the
operation, and bits 9-12 address an accumulator. The rest of the instruction
word supplies information for calculating the effective address, which is the
actual address used to fetch the operand or alter program flow. Bit 13
specifies the type of addressing, bits 14-17 specify an index register for use

June 1982 Introduction l-22.1

ADDRESS TYPE

ACCUMULATOR

I

INDEX REGISTER

ADDRESS \ 1 ADDRESS

INSTRUCTION CODE I ’ I’I ’ I MEMORY ADDRESS I

cl 89 12 13 !4 17 18 35

BASIC INSTRUCTION FORMAT

in address modification, and the remaining eighteen bits (18-35) address a
memory location. In variations on this basic format, bits 9-12 may be used
for addressing flags, or all thirteen high order bits (O-12) may be used for
an expanded instruction code. The instruction codes that are not assigned
as specific instructions are performed by the processor as so-called “unim-
plemented operations.” Among the unimplemented operations are some
that are specified as “unimplemented user operations” or UUOs (a mne-
monic that means nothing to the assembler). Some of these are for the local
use of a program (LUUOs) and some are for communication with the Moni-
tor (MUUOs). In general, unassigned codes act like MUUOs.

In the KLlO and earlier processors, three 1s in bits O-2 indicate an
input-output instruction, and these instructions have a different format. In
all processors from the KS10 on, in-out instructions use the basic format,
but for consistency they alwa k s do have 1s in the leftmost three bits (there
are also non-10 instruction codes beginning with 7). In the IO instruction
format used prior to the KSlO, bits 3-9 address the in-out device to be used
in executing the instruction, and bits lo-12 specify the operation. The rest
of the word is the same as in other instructions.

ADDKESS TYPE

MEMOKY ADI)KESS

0 2 3 Y IO I2 I.3 14 17 I8 35

PRE-KS10 IN-OUT INSTRUCTION FORMAT

Of course post-KLlO IO instruction codes are opportunely chosen, so equiv-
alent instructions generally have the same configuration in all processors.

Note that bits 13-35 have the same format in both types of instruc-
tions; in fact these bits are the same in every instruction whether it ad-
dresses a memory location or not. In the format illustrations throughout
the manual this part of an instruction word is shown as

I/l x I 71
I3 I4 I7 IX 35

where bit 13 is represented by 1 for “indirect bit,” i.e. the address type is
either direct or indirect, where the latter is indicated by a 1. For every
instruction the processor carries out an effective address calculation that
results in a quantity referred to as E. This is the effective address of the
instruction if indeed it is an address, whether for an operand or a jump. E
may however be effective conditions, an effective shift, or something else,

Introduction l-23

but the result of the calculation is always referred to as E. In illustrations
for the basic instructions, bits 9-35 are almost always represented by

1/2llr-I Y 1
9 12 1.3 14 17 IX 35

where A is the accumulator address.

NOTE

Although the various parts of an instruction word are always
labeled, in some instructions the result of the effective ad-
dress calculation is not actually used. Unless otherwise speci-
fied, in such cases the I, X and Y parts of the word are re-
served by Digital for possible future use, and they must be
zero for compatibility with such use. Similarly when bits
9-12 are not used, they are also reserved and must be zero.

A similar stricture holds for all the formats defined
throughout the manual for address words, pointers, and all
sorts of special words associated with system features. In
words supplied by the program, unassigned bits are available
for arbitrary use by the user only if specifically so indicated.
Bits labeled “reserved” or simply left blank are reserved to
Digital for future use by the hardware or use by the system
software. In any word read by the program, unlabeled bits
are read as OS unless there is a specific indication otherwise.

The KLlO and KS10 have a feature that allows expansion of the in-
struction repertory by an extension of the basic format to two words. In a
two-word instruction, it is only the first word that actually appears in the
program sequence, i.e. that is referenced by PC; and the accumulator used
by the instruction is that specified by the A field of the first word. But the
instruction the processor actually executes is the second word, and it is
found at location EO, which is the result of the effective address calculation
for the first word. Moreover, the way the processor interprets the instruc-
tion code of the second word is entirely different from the way it would if
that same word appeared in the program sequence as a one-word instruc-
tion. Thus use of a single instruction code in the first word effectively
creates a whole new instruction set as large as the one the processor al-
ready has. At present there is only one such extended instruction set, and
only a small number of the available extended codes are used. In extended
instructions the first word is the extend instruction, which has code 123.
The format illustrations for these instructions are like this.

123 A I x Y 1
0 89 I2 I3 I4 17 18 3s

EO INSTRUCTIONCODE: 00 / x Y
1

.-

0 89 I2 13 14 I7 I8 3s

l-24 Introduction

But remember: although the two words are shown together, they never
appear one after the other in the program sequence. If they did, the proces-
sor might well perform the second word as a standard instruction after
executing it as an extended instruction. As with all instructions, before
executing the second word the processor calculates an effective address for
it; this is referred to as PI, and its use depends on the instruction. Bits 9-12
of the second instruction word must be zero for compatibility with possible
future use. Unassigned extended instruction codes are executed as MUUOs.

1.6 Effective Address Calculation

At system startup the pager is off, so all addresses are used as physical
addresses for memory. In this case of course the program must not give
addresses that lie outside the range determined by available memory. Also
when the Monitor is setting up page maps, it must select appropriate physi-
cal translations. But for a running program, whether user or executive, in
any normal circumstances, the relevant memory space is the virtual ad-
dress space; and all address calculation should be viewed as being in virtual
space. This is true even for fast memory, which every program regards as in
its virtual space even though fast memory addresses are treated as physical
and are not sent to the pager for mapping: instead they are supplied di-
rectly to the fast memory from VMA. For our discussion of the effective
address calculation let us begin with the simpler case - a virtual space
limited to a single section (all quantities eighteen bits).

Bits 13-35 have the same format in every instruction whether it ad-
dresses a memory location or not. Bit 13 is the indirect bit, bits 14-17 are
the index register address, and if the instruction must reference memory,
bits 18-35 are the memory address Y. The effective address E of the in-
struction depends on the values of I, X and Y. If I and X are both zero, Y is

II! x I
13 14 17 18 35

E- i.e. bits 18-35 contain the effective address. If X is nonzero, the con-
tents of the right half of index register X are added to Y to produce an 1%
bit modified address. If I is 0, addressing is direct, and the modified address
is the effective address used in the execution of the instruction; if I is 1,
addressing is indirect, and the processor retrieves another address word
(referred to as an “indirect word”) from the location specified by the modi-
fied address already determined. This new word is processed in exactly the
same manner: X and Y determine the effective address if I is 0, otherwise
they are used for yet another level of address retrieval This process contin-
ues until some referenced location is found with a 0 in the indirect bit; the
H-bit number calculated from the X and Y parts of this location is the
effective address E. We have taken Y to be a memory address, but the
program can just as well have an address in the index register, and have
the Y part of any instruction or indirect word that references it be an offset
or displacement. An instruction or indirect word is still an “address word”

Introduction 1-25

even though it may not contain an address; and the quantity in an index
register is still called an “index” even when it is an address instead of an
offset. Note that throughout the procedure, no computed quantity is ever
larger than eighteen bits. In the arithmetic operations overflow is dis-
carded by disabling the carry from bit 18 to bit 17. Hence adding a large
offset can be the same as subtracting a small one.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location If the indirect bit in the instruc-
tion word is 0 and no memory reference is necessary, then Y is not an
address. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, an offset for bytes in a string, or part of it may be
the number of places to shift in a shift or rotate instruction or the scale
factor in a floating scale instruction. Even when modified by an index regis-
ter, bits 18-35 do not contain an address when I is 0 and no memory refer-
ence is required. But when I is 1, the number determined from bits 14-35 is
an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which I
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective offset, effective shift number,
or effective scale factor. Many of the instructions that usually reference
memory for an operand even have an “immediate” mode in which the result
of the effective address calculation is itself used as a half word operand
instead of a word taken from the memoiy location it addresses. KS10 IO
instructions do not use the result of the effective address calculation; in-
stead they recompute an IO address by a similar procedure (42.17).

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type ,of
information that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask,
offset or conditions, or only part of it as in a shift number or scale factor.

PLEASE READ THIS

The calculation of E is the first step in the execution of every
instruction. No other action taken by any instruction, no mat-
ter what it is, can possibly precede that calculation. There is
absolutely nothing whatsoever that any instruction can do to
any accumulator or memory location that can in any way af-
fect its own effective address calculation.

Extended Addresses

As explained at the beginning of this chapter, the address space of an
unextended processor is limited to one section, which by definition is
section 0. Such processors employ only in-section addresses, as no section
number is necessary when there is only one section. In an extended proces-
sor the much larger address space is divided into sections of 256K each, and
an individual location is identified by an address containing both a section

-

l-26 Introduction June 1982

number and an in-section part. There are still many circumstances, how-
ever, in which in-section addresses are used alone in an extended processor.
The most obvious case is the address given directly by an instruction: this
is limited to eighteen bits and is confined to the section from which the
instruction is retrieved, being usually the section in which the program is
currently running as determined by PC. And, of course, if user space is not
extended, all of its addresses are in-section, being in section 0.

EXTENDED
ADDRESSES

0000000

277771;

ADDRESS
SPACE

SECTION 0

SECTION I

SECTION 2

IN-SECTION
ADDRESSES

0

I

777771
0

777771

0

8

777717

Even in an extended space, an effective address calculation performed
in section 0 is done exactly as outlined above, with all addresses and dis-
placements taken as l&bit quantities contained in bits 18-35 of an instruc-
tion word, an index register, or an indirect word. In other words, when a
program is running in section 0, E can never reference a nonzero section,
for either an operand or a jump (although it can reference an operand that
supplies an extended address). Moreover in terms of addressing, section 0 of
an extended space is entirely compatible with the single section of an unex-
tended space. But in nonzero sections, the effective address calculation can
use extended addressing. To understand how extended addressing works,
the reader must understand the following terms.
l A local address is an H-bit address. The location it addresses must be in
some section, which may be any section, but the section number is supplied
by something other than the address.
l A global address is a 30-bit address, which therefore supplies its own
section number. Of course only the right twenty-three bits (sections O-37)
are meaningful in a KLlO extended address space, but this does not mean
that larger section numbers cannot be used for software purposes In partic-
ular section number 7777 is reserved always to trap to the Monitor.
e A local index is an N-bit unsigned displacement or address in bits 18-35
of an index register.
e A global index is a 30-bit unsigned displacement or address in bits 6-35
of an index register.
o A local indirect word is one containing a local address or displacement
in this format.

June 1982 Introduction l-27

I 0 HESEHVEI) I x Y I
0 I 2 12 I.1 14 17 IU 3s

-

For obvious reasons, an address word of this sort is also called an “instruc-
tion format indirect word”. An instruction word is by definition a local
address word.
l A global indirect word is one containing a global address or displace-
ment in this format.

OfI x 1 Y I
0 I 2 56 3s

An address word of this type is also called an “extended format indirect
word”.

We can now state that an extended effective address calculation is
carried out by essentially the same procedure as described above, with in-
dex and indirect steps depending on the values of I and X supplied by a
sequence of address words. But now there are differences in the meanings
of individual terms and in the way individual operations are performed.
First, the indirect bit can be either bit 13 or bit 1 depending on whether it
is supplied by a local or global address word (instruction or extended for-
mat). Second, there are several varieties of indexing: local and global, with
two versions of the latter depending on whether the quantity being indexed
is local or global.
l Local indexing occurs when the address word is local and either the left
half of the index register is negative or the section number part of it (bits
6-17) is zero. In this case the operation is carried out just as in the unex-
tended procedure, and the indexing produces a local address in the section
from which the address word is taken (the PC section in the case of an
instruction word). Note that this means the program can use local indexing
in a nonzero section; and furthermore it can use the left half of the local
index register for a control count that counts up through negative numbers
to end an iterative process at zero.
l Global indexing occurs when the address word is global, or the address
word is local but the left half of the index register is positive and bits 6-17
contain a nonzero section number. In either case the result is a global
address. When the address word is global, the index is taken as global and
is added to Y (bits 6-35 of the global indirect word). This is simply a global
extension of local indexing: the address word may contain an address and
the index register an unsigned offset, or vice versa; adding a large offset
can be the same as subtracting a small one. The case where the address
word is local is quite unlike local indexing: the index is assumed to be a
global address, and the H-bit Y is interpreted as a signed displacement
(maximum magnitude 217), which is added to it algebraically.

l-28 Introduction

As shown in Figure 1.7, the effective address calculation begins in the
section from which the first address word is taken. This is the “local” sec-
tion for the given address word - the PC section in the case of an instruc-
tion word specified by PC. The calculation remains in the local section until
the appearance of a global quantity (index or indirect word) changes the
section number. So long as only local events occur, all addresses are inter-
preted as being in the same section (local indexing wraps around 256K).
Note that either a local or global address can be used to fetch either a local
or global indirect word; but indexing can change only a local quantity to a
global one - it cannot modify a global address into a local one. No matter
how long the procedure remains local, global indexing or retrieval of a
global indirect word can switch to a new section. However if the procedure
enters section 0 it can never get out. This is because the calculation then
interprets all further quantities as local no matter what their format, i.e.
no matter what the program may have meant by the information placed in
the words containing them.

At the end if E is an address, then either it is a global address or it is
interpreted as being in the last section specified. But in an instruction in
which E is not an address, the section number is ignored and E is whatever
number of bits is appropriate. In particular an immediate mode operand is
always eighteen bits, except in two instructions that specifically handle an
extended address as an immediate operand.

The accumulators are regarded as being in the local section of the
instruction that addresses them. Hence unless otherwise specified, a local
pointer taken from an accumulator addresses a location in the same section
as the instruction.

Finally, there is the matter of fast memory reference. An address refer-
ences a fast memory location if its in-section part is in the range O-17, and
either the address is supplied by PC, the section number is 0, the section
number is 1, or the address is local. Note that if PC counts beyond the last
in-section address, the wraparound causes instructions to be taken from the
ACs. There are two means by which AC references can be made from any
section: by using a local address, or by using what is specifically regarded
as a global AC address, a section number of 1 combined with a fast memory
in-section address.

Introduction l-29

NOTATION IS THAT USED

IN THE REPRESENTATION

OF INSTRUCTION OPER-

ATIONS IN APPENDIX A

Figure 1.7: Extended Effective Address Calculation

BEGIN WITH

INSTRUCTION

WORD (IW) PC6-17-E6-17
FETCHED FROM

PC635

X = BITS 14-17 OF IW

Y = BITS 1%350F IW

LOCAL

Y IS SIGNED

DISPLACEMENT

XRR+Y .ER XR6_35+Y-E

-E

“XR” REPRESENTS THE CONTENTS

OF INDEX REGISTER X

FETCH INDIRECT

L WORD (IWI

FROM E

I I

X = BITS 2-5 OF IW

XR6_35+Y-E Y-E

l-30 Introduction

1.7 KLIO Memory

When dealing with storage modules, the processor need not wait the entire
memory cycle time. To read, it waits only until the information is available
and then continues its operations, whatever the memory must do; to write,
it waits only until the data is accepted, and the memory then performs an
entire cycle to write that data. To save time in an instruction that fetches
an operand and then writes new data into the same location, the memory
executes a read-modify-write cycle in which it performs only the read part
initially and then completes the cycle when the processor supplies the new
data. This procedure is not used however in a lengthy instruction (such as
multiply or divide), which would tie up a storage module that may be
needed by some other processor. Such instructions instead request separate
read and write access. However, the above considerations apply only when
the cache is not in use or is not present, thus requiring that the processor
always deal with the storage modules and that it request one word at a
time. With the cache in use for a given page, memory access is handled
using the cache wherever possible, and when storage access is required,
transfers are in 4-word groups. For a read request, the M box reads from
the cache if the word is there; otherwise it initiates a storage-to-cache
transfer, but this may require a prior cache-to-storage transfer to make
room for the new data. For a write request, the M box always writes in the
cache, and this too may require a cache-to-storage transfer to make room.
Otherwise the M box writes in storage only when the cache is not in use,
the Monitor specifically updates memory, or the data is supplied by an
internal channel.

For handling storage transfers for a channel or with a cache, the M box
interprets physical addresses in this format.

r PAGE I 1-1
14 26 27 33 34 35

When the E box requests a word that is not in the cache, the M box gets the
four words in the group specified by bits 27-33, or more specifically, gets
whichever of them are not already in the cache. For the quickest possible
service, the M box first gets the particular word requested; e.g. if the pro-
gram requests word 2 in a group, the M box retrieves word 2 first, followed
by words 3, 0, and 1. Even without a cache, channel transfers are always in
groups of four, except perhaps for the first or last group in a block. Except
with an MF20, the processor further increases the speed cjf memory opera-
tion by overlapping memory cycles: it can start one module to read a word
before receiving a word previously requested from a different one. Such
speedup is unnecessary with an MF20 as it is four words wide. Of course
fast memory and the cache have no basic cycle; with them the processor
reads or writes a word directly.

Introduction 1-31

From the simple hardware addressing point of view, the entire physical
memory is a set of locations whose addresses range from zero to a maxi-
mum dependent upon the capacity of the particular installation. In a sys-
tem with the greatest possible capacity, the largest address is octal
17777777, decimal 4,194,303. (Addresses are always in octal notation un-
less otherwise specified.) But the whole memory would usually be made up
of a number of storage modules of different capacities. Hence a given ad-
dress actually selects a particular module and a specific location within it.
For a 64K module with 22-bit addressing, the high order six address bits
select the module, the remaining sixteen bits address a single location in it;
selecting a 32K memory takes seven bits, leaving fifteen for the location.
The times given below assume the addressed memory is idle when access is
requested. The processor can avoid waiting for its own previously requested
memory cycles to end by making consecutive requests to different storage
modules. With an MF20 memory almost all transfers are of four words at a
time, so there is seldom any conflict among requests. With other memories
and provided a cache is in use, ordering requests among modules can be
guaranteed by interleaving them in sets of four, in such a way that re-
quests for the words in a group are cycled through the four modules in the
set. Interleaving is effected by assigning four modules, each of n locations,
to the same 4n-location area of the address space, and setting each module
to respond only to one request out of the four in a group. Hence within the
given area, all addresses ending in 0 or 4 are locations in one module, those
ending in 1 or 5 are locations in a second, and so forth. Some of the earlier
modules can be interleaved only in pairs, which is not as effective but is
worthwhile. Without a cache, interleaving is not as effective, but it is still
advisable since the program is sequential. Without interleaving or a cache,
some alteration between modules is produced by keeping instructions in
one and operands in another. Interleaving, assigning module numbers, and
so forth, is done by the program for internal memories but by manual
switch settings for external memories. Complete information is given in
Appendix G.

The only physical locations uniquely defined by the hardware are those
in fast memory, locations O-17. All other hardware-defined addresses are
relative to pages, such as the process tables, whose physical location is
specified by the Monitor. Physical memory in a system is a constant unless
a storage module is actually added or removed. The virtual address space
accessible to a particular program is entirely a function of the way in which
the Monitor sets up user operating conditions, except that any space and
any restrictions must encompass an integral number of pages.

Memory Characteristics

The following tables give the characteristics of the various memories for
the two types of KLlO processor. Times are in microseconds, and for exter-
nal memories they include the delay introduced by 10 feet (3 meters) of
cable. Read access for a single word or the first in a group is the time from
the request until the word is in AR. For an entire 4-word group, read access
is the time from the request until the last word is in the cache. Write access

_-

l-32 Introduction

is the time from the request until the processor receives the memory ac-
knowledgment, for either the first word or the fourth. Except for the MF20,
these figures define the system access rates for storage modules with 4-way
interleaving, as all memory operations are absorbed within them: by the
time the processor receives the data or the acknowledgment, it can make a
new request, which the memory will be ready for. Sizes given are those in
which the units are available. Note that interleaving depends on the num-
ber of modules, not the number of units, most of which contain more than
one module. Hence 4-way interleaving can be done with a single MA20 or
MB20 memory, whereas it requires two MHlOs or MGlOs and four MFlOs.

With MF20 memories, there is only one module per unit and interleav-
ing is not used. (Each controller can handle three units or “groups”.) The
times given in the table are the actual times the processor must wait to get
data or an acknowledgement, except that hitting a refresh cycle can cause a
delay of up to 533 ns (refreshing requires about 3X% of total memory
time). Following a read, the processor can make another request immedi-
ately. Following a write, it must wait from 467 to 867 ns before another
request can be handled by the same controller. However since a single
MF20 handles four words at once, one request following another within
that time is unlikely.

Fast memory times are for referencing a memory location for an oper-
and; a fast memory instruction fetch takes slightly more time than a cache
access. When a fast memory location is addressed as an accumulator or
index register, the access time is considerably shorter and usually takes no
time at all, as it is done in parallel with instruction operations that are
required anyway.

Physical Characteristics

Number of Modules

MFlO Core Memory 1

MGlO Core Memory 2

MHlO Core Memory 2

MA20 Core Memory 4, 8
MB20 Core Memory 4, 8
MF20 MOS Memory 1

KLlO Fast Memory

KLlO Cache

Size

32K, 64K

64K, 128K

128K, 256K

64K, 128K

128K, 256K

256K

16

2K

The MF20 has a 7-bit error correction code; all other units have only a
single parity bit. The MF20 also has a spare bit that can be substituted for
a known bad bit.

Introduction l-33

MFlO Core Memory

MGlO Core Memory

MHlO Core Memory

MA20 Core Memory

MB20 Core Memory

MF20 MOS Memory

KLlO Fast Memory

KLlO Cache

MFlO Core Memory

MGlO Core Memory

MHlO Core Memory

MA20 Core Memory

MB20 Core Memory

KLlO Fast Memory

KLlO Cache

Extended Processor Timing

First or Single Word Access

Read Write

1.493 1.084

1.553 1.134

1.633 1.134

.883 .40

1.017 .40

,800 ,267

,067 ,067

,133 .133

Single-section Processor Timing

First or Single Word Access

Read Write

1.627 1.217

1.687 1.267

1.767 1.267

1.06 .48

1.22 .48

,080 ,080

.160 ,160

Four Word Access

Read Write

2.227 1.484

2.287 1.534

2.367 1.534

1.467 1.60

1.60 1.60

1.40 ,667

Four Word Access

Read Write

2.507 1.697

2.567 1.747

2.647 1.747

1.76 1.92

1.92 1.92

1.8 KS10 Memory

Any subsystem can request use of the bus to write a word into storage or
read a word from it. To save time in byte input operations, a Unibus
adapter can also get the bus for a read-modify-write cycle. In this transac-
tion a word goes from memory to the adapter, which inserts the byte and
immediately sends the modified word back. A requesting subsystem may
have to wait til the bus is free and it has priority, and even then there may
occasionally be a further wait of up to 750 ns for memory refresh (which
requires about 5% of total memory time). But otherwise reading from stor-
age takes 900 ns, and writing takes 600 although the memory remains
busy for an additional 300. Whenever the processor writes or reads a word
in storage, that word is automatically written in the cache. Thus if the
processor wishes to read the same word at a later time, retrieval requires
only 300 ns. The cache hit rate is generally about 80%.

The following table gives the characteristics of KS10 memory with
times in nanoseconds.

MOS Memory

Fast Memory

Cache

Read Write Size Error Facility

900 600 128K-512K 7-bit correction
code

300 300 16 2 parity bits

300 512 2 parity bits

l-34 Introduction

There is no cache write time as writing is automatic and is absorbed in
storage access time. Fast memory times are for addressing as memory loca-
tions. Access to an accumulator or index register is made in a single mi-
croinstruction period of 150 ns, and frequently this represents no extra
time, as the same microinstruction often performs other functions.

The memory array comprises from two to eight storage modules of 64K
each. But from the hardware addressing point of view, the entire physical
memory is simply a set of locations whose addresses range from zero to a
maximum dependent upon the capacity of the particular installation. In a
system with the greatest possible capacity, the largest address is octal
1777777, decimal 524,287. (Addresses are always in octal notation unless
otherwise specified.)

At a halt the microcode places a halt code and PC in storage locations 0
and 1. The only other physical locations uniquely defined by the hardware
are those in fast memory, locations O-17. All other hardware-defined ad-
dresses, such as in the process tables or the halt status block, are relative to
physical locations specified by the Monitor. Physical memory in a system is
a constant unless a storage module is actually added or removed. The vir-
tual address space accessible to a particular program is entirely a function
of the way in which the Monitor sets up user operating conditions, except
that any space and any restrictions must encompass an integral number of
pages.

1.9 Programming Conventions

Two elements of system software intimately associated with the presenta-
tion in this manual are the assembler and the operating system. The man-
ual explains the DECsystem-10 and DECSYSTEM-20 in terms of machine
language programming. Such programming makes use of those basic char-
acteristics of the MACRO assembler described here. The assembler natu-
rally has many other features, such as use of predefined and user-defined
pseudoinstructions. The overview of the system presented in the first two
sections and the more detailed presentation of system operations in later
chapters are in a sense a presentation of the sophisticated features of the
operating system: its most impressive features related to the processor are
essentially its capabilities for taking advantage of these sophisticated hard-
ware characteristics. There are two versions of the operating system, the
TOPS-10 Monitor and the TOPS-20 Monitor. The basic thrust of both is
the timesharing of the system among a number of independent users, all of
whom can make extensive use of all system facilities, including front end
processing and the advanced file system.

MACRO recognizes a number of mnemonics and other initial symbols
that facilitate constructing complete instruction words and organizing
them into a program. In particular there are mnemonics for the instruction
codes (Appendix A), which are nine or thirteen bits (six in pre-KS10 in-out
instructions). The assembler translates every statement into a 36-bit word,
placing OS in all bits whose values are unspecified. For example, the mne-
monic

Introduction l-35

MOVNS

assembles as 213000 000000, and

MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an in-
struction, produces the twos complement negative of the word in memory
location 2570.

NOTE

Throughout this manual all numbers representing instruc-
tion words, register contents, codes and addresses are always
octal, and any numbers appearing in program examples are
octal unless otherwise indicated. On the other hand, the ordi-
nary use of numbers in the text to count steps in an operation
or to specify word or byte lengths, bit positions, exponents,
etc. employs standard decimal notation.

The initial symbol @m preceding a memory address places a 1 in bit 13
to produce indirect addressing. The example given above uses direct ad-
dressing, but

MOVNS (a 2570

assembles as 213020 002570, and produces indirect addressing. Placing the
number of an index register (l-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS (a2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (O-17) precedes the memory address part (if
any) and is terminated by a comma. Thus

MOVNS 4,@&2570(12)

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place 1s in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in a pre-KS10 in-out instruction is given in the same
manner as an accumulator address (terminated by a comma and preceding
the address part), but the number given must correspond to the octal digits
in the word (000-774). Mnemonics are however available for all standard
device codes. To control the priority interrupt system whose code is 004, one
may give

-

l-36 Introduction

CON0 4,1302

which assembles as 700600 001302, or equivalently

CON0 PI,1302
The programming examples in this manual use the following address-

ing conventions:

l A colon following a symbol indicates that it is a symbolic location
name.

A: ADD 65704

indicates that the location that contains ADD 65704 may be addressed
symbolically as A.
l The period represents the current address, e.g.

ADD 5,.+2

is equivalent to

A: ADD &A+2

l Square brackets specify the contents of a location, leaving the address
of the location implicit but unspecified. For example,

ADD 12,172560041

and

ADD 12,A

A: 7256004

are equivalent. The bracketed quantity, which is called a “literal”, can be
given as the left and right halves separated by a double comma, not only
eliminating the need to insert leading zeros for the right half, but allowing
use of a minus sign for a negative half word as well. In other words

[-246,,1351

is equivalent to

[777532000135]

A literal can encompass any number of lines of code, employing any of
the programming conventions defined above, and to be assembled in con-
secutive locations. In fact a reasonable way to assemble the extended in-
structions is to give the individual extended instruction code and any neces-
sary follow-up words as a literal in an extend instruction. The assembly of
these two lines,

STRING: EXTEND ACJMOVSO OFF
FILL]

Introduction l-37

produces, in location STRING, an EXTEND whose Y part (EO) points to the
location containing the second instruction word MOVSO OFF. The Y part
(El) of the MOVSO contains the signed offset OFF, and location E0+1
contains the fill character FILL.

Anything written at the right of a semicolon is commentary that ex-
plains the program but is not part of it.

1 .lO KIlO and KAlO Characteristics

The KIlO and KAlO are similar, even identical, to the KLlO in many
respects, but their implementation is quite different: they have no micro-
controller or microcode. They use the PDP-10 instruction set but not in its
full variety as available in the KLlO: neither earlier processor can handle
strings or double precision fixed point numbers; the KAlO has no capability
for handling doublewords or performing double precision floating point
arithmetic, although it does have instructions (retained on all KLlO and
KIlO TOPS-10 systems) for assisting the software in doing double precision
floating point in a special software format.

Figure 1.8 illustrates the organization of a DECsystem-10 based on
either of the earlier processors. The processor handles its peripheral equip-
ment directly over an in-out bus, there is no cache, there is a real time clock
but no meters, and all memory is external. The extra four bits shown on
address registers are applicable only to the KIlO. Both processors use an
l&bit internal address providing a virtual memory of one section that is
compatible with section 0 of the KLlO. But whereas the KAlO has a maxi-
mum physical memory equal in size to its virtual memory, which is organ-
ized by protection and relocation hardware, the KIlO has a physical ad-
dressing capability equal to that of the KLlO (22-bit address, 4096K) and
has paging hardware. The KIlO virtual address space is the same as that of
a KLlO with the TOPS-10 Monitor, except that in executive mode the first
112K of memory is unpaged (and thus not available to the supervisor pro-
gram), and the Monitor can define a so-called “small user” whose accessible
space must lie within the virtual ranges O-37777 and 400000-437777. The
KIlO has four fast memory blocks, of which hardware requires that the
Monitor use block 0; the KAlO has only one block.

Both processors have manual operator consoles with facilities that are
directly relevant to the programmer, although they are used mostly for
manually stepping through a program to debug it. From the sense switches
and the 36-bit data switch register DS, the program can read information
supplied by the operator, and through the memory indicators MI, the pro-
gram can display data for the operator. By means of the address switch
register AS, the operator can examine the contents of, or deposit informa-
tion into, any memory location; stop or interrupt the program whenever a
particular location is referenced; and supply a starting address for the pro-
gram. In these processors IR contains the entire left half of the current
instruction word, i.e. eighteen bits rather than thirteen. The memory ad-
dress register MA supplies the address for every memory access. In the
arithmetic logic of the KAlO, there are only single length registers; but in

l-38 Introduction

the KIlO, AR and AD have Z&bit left extensions for double precision float-
ing point. The KAlO has no trapping mechanism: arithmetic and stack
overflow signal the program by way of interrupts. Individual processor dif-
ferences relevant to user programming are listed in Appendix E.

Figure 1.8: DECsystem-10 Based on KIlO or KAlO

r
I

L

I
I
I
I
I

MEMORY BUS
CENTRAL
PROCESSOR

IN.OUT BUS

ARITHMETIC I- LOGIC

IAD, AR. ETC)
MI 1 36

DS

PRIORITY

INTERRUPT

I

I
CONSOLE

TERMINAL

l
PAPER TAPE

READER

I
PAPER TAPE

PUNCH

I

DISK

SYSTEM

Memory

The following table gives the characteristics of the various memories avail-
able with the KIlO and KAlO. Modify completion is the time to finish a
read-modify-write cycle after the processor supplies the new data. Times
are in microseconds and include the delay introduced by ten feet (three
meters) of cable. Fast memory times are for referencing as a memory loca-
tion (l&bit address); when a fast memory location is addressed as an accu-
mulator or index register, the access time is considerably shorter.

Introduction l-39

Read Write
Access Access

MA10 Core Memory .61

MB10 Core Memory .60’”

MD10 Core Memory .83

ME10 Core Memory .61

MFlO Core Memory .61

MGlO Core Memory .67

MHlO Core Memory .74

KAlO Fast Memory .21

KIlO Fast Memory .28

j’ Add .l in a multiprocessor system.

.20

.20”

.33

.20

.20

.23

.23

.21

.O

Cycle
Modify

Completion

1.00 .57

1.65” .97

1.8 1.23

1.00 .65

1.00 .63

1.00 .63

1.18 .68

Size

16K

16K

32-128K

16K

32K, 64K

32-128K

64-256K

16

16

KIlO access to accumulators and index registers effectively takes no
time - it is done in parallel with instruction operations that are required
anyway. Retrieval of instructions or memory operands from fast memory is
generally not worthwhile because of the extensive overlapping that speeds
up core access. However, except in instructions that use two accumulators,
storage of a memory operand in fast memory not’ only takes no time but
actually decreases slightly the nonmemory time.

In a system with the greatest possible capacity, the largest KIlO ad-
dress is octal 17777777, decimal 4,194,303; the largest KAlO address is
octal 777777, decimal 262,143. All storage modules can be interleaved in
pairs, and some of them in sets of four (see Appendix G). The KAlO cannot
overlap memory access.

KIlO Memory Allocation. The KIlO hardware defines the use of cer-
tain memory locations, but most are relative to pages whose physical loca-
tion is specified by the Monitor. The auto restart uses location 70. The only
other physical locations uniquely defined by the hardware are those in fast
memory, whose addresses are the same for all programs: location 0 holds a
pointer word during a bootstrap readin, O-17 can be addressed as accumu-
lators, and 1-17 can be addressed as index registers. The only addresses
uniquely specified in the user virtual space are for user local UUOs -
locations 40 and 41. All other addresses defined by the hardware, for use in
page mapping, responding to priority interrupts, or other hardware-ori-
ented situations, are to locations in the process tables.

l-40 Introduction

KAlO Memory Allocation. The use of certain memory locations is
defined by the KAlO hardware.

0

o-17

1-17

40-41

42-57

60-61

Holds a pointer word during a bootstrap readin.

Can be addressed as accumulators.

Can be addressed as index registers.

Trap for unimplemented user operations WUOs).

Priority interrupt locations.

Trap for remaining unimplemented operations: these include
the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed.

140-161 Allocated to second processor if connected (same use as 40-61
for first processor). All information given in this manual about
memory locations 40-61 for a KAlO applies instead to locations
140-161 for programming a second KAlO connected to the same
memory.

In a user program the trap for a local UUO is relocated to locations 40
and 41 of the user area; a Monitor UUO uses unrelocated locations. All
other addresses listed are for physical (unrelocated) locations.

Introduction 1-41

Chapter 2

User Operations

This chapter describes all PDP-10 instructions that are generally available
to the user. It also defines the types of in-out instructions, but does not
discuss their effects when they address specific internal system elements or
peripheral devices. In the description of each instruction, the mnemonic
and name are at the top, the format is in a box below them. The mnemonic
assembles to the word in the box, where bits in those parts of the word
represented by letters assemble as OS. The letters indicate portions that
must be added to the mnemonic to produce a complete instruction word. For
extended instructions, the mnemonic given actually assembles to the word
shown in the second format box; the first box shows the configuration of the
EXTEND itself. The programmer must give EXTEND, and give the listed
mnemonic either as a literal with EXTEND or place it in the source pro-
gram at the location specified by the EXTEND effective address.

For many of the non-10 instructions, a description applies not to a
unique instruction with a single code in bits O-8, but rather to an instruc-
tion set defined as a basic instruction that can be executed in a number of
modes. These modes define properties subsidiary to the basic operation; e.g.
in data transmission the mode specifies which of the locations addressed by
the instruction is the source and which the destination of the data, in test
instructions it specifies the condition that must be satisifed for a jump or
skip to take place. The mnemonic given at the top is for the basic mode;
mnemonics for the other forms of the instruction are produced by append-
ing letters directly to the basic mnemonic. Letters representing modes are
suffixes, which produce new mnemonics that are recognized as distinct
symbols by the assembler. Following the description is a table giving the
mnemonics and octal codes (bits O-8) for the various modes.

In a description E refers to the effective address, half word operand,
mask, offset, conditions, shift number or scale factor calculated from the I,
X and Y parts of the instruction word. In an instruction that ordinarily

2-l

references memory, a reference to E as the source of information means
that the instruction retrieves the word contained in location E; as a desti-
nation it means the instruction stores a word in location E. In the immedi-
ate mode of these instructions, the effective half word operand is usually
treated as a full word that contains E in one half and zero in the other, and
is represented either as 0,E or E,O depending upon whether E is in the right
or left half. In extended instructions EO and El refer to the results of the
effective address calculations for the first and second instruction words. E,
refers to the right eighteen bits of the effective address (i.e. the in-section
part), but in a machine lacking extended addressing, E, is equivalent to E.
A reference to “location E,E+l” means the contents of the two locations are
used together as a doubleword, such as a double length number. If the
program is running in section 0 or the instruction gives a local address, the
addresses wrap around so that when E is 777777, E+l is 0.

PLEASE READ THIS

The calculation of E is the first step in the execution of every
instruction. No other action taken by any instruction, no mat-
ter what it is, can possibly precede that calculation. There is
absolutely nothing whatsoever that any instruction can do to
any accumulator or memory location that can in any way af-
fect its own effective address calculation.

Most of the non-10 instructions can address an accumulator, and in the
box showing the format this address is represented by A; in the description,
“AC” refers to the accumulator addressed by A. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two or more accumula-
tors, these have addresses A, A+l, A+2, etc., which are interpreted modulo
20,; e.g. A+1 is 0 when A is 17. In the text the various accumulators are
referred to as AC, AC+l, and so forth. A pair of accumulators holding a
doubleword is referred to as AC,AC+l. In some cases an instruction uses an
accumulator only if A is nonzero: a zero address in bits 9-12 specifies no
accumulator.

The instructions are described in terms of their effects as seen by the
user in a normal program situation, and on the assumption that nothing is
amiss - the program is not attempting to reference a memory that does not
exist or to write in a protected area of memory. In general, all descriptions
apply equally well to operation in executive mode. For completeness, the
effects of restrictions on certain instructions are noted, as are the effects of
executing instructions in special circumstances. But for the details of pro-
gramming in such special situations the reader must look elsewhere. In
particular, Q2.9 discusses trapping, 02.19 explains the restrictions on user
programming, and Chapters 3 to 5 describe the special effects and restric-
tions associated with system operations in the various processors.

To minimize processor execution time the programmer should mini-
mize the number of memory references and iterative operations. When
there is a choice of actions to be taken on the basis of some test, the condi-
tions tested should be set up so that the action that results most often takes
the least time. There are also various subtleties that affect timing (such as

-

2-2 User Operations

the nature of the arithmetic algorithms), but these are generally not worth
considering except in very special circumstances (to determine the effect
often takes more than the time saved).

No execution times are given with the instruction descriptions as the
time may vary greatly depending upon circumstances. The time depends
upon which processor performs the instruction, and in many cases on the
configuration of the operands and the number of iterative steps. The proces-
sor is designed to save time wherever possible by inspecting the operands in
order to skip unnecessary steps.

The text sometimes refers to an instruction as being “executed.” To
“execute” an instruction means that the processor performs the instruction
out of the normal sequence, i.e. the sequence defined by the program
counter (which sequence may not be consecutive, as when a skip or jump or
some special circumstance changes PC). The processor fetches an executed
instruction from a location whose address is supplied not by PC, but rather
by an extend or execute instruction (whose operand is itself interpreted as
an instruction) or by some feature of the hardware such as a priority inter-
rupt, trap, etc. It is assumed that control will shortly be returned to PC, at
the location it originally specified before the interruption unless the in-
struction executed or the hardware feature itself changes PC.

Some simple examples are included with
but more complex examples using a variety
02.15.

2.1 Full Word Data Transmission

the instruction descriptions,
of instructions are given in

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magni-
tude of the word being processed. Let us begin with a single instruction
that simply interchanges the contents of an accumulator and a memory
location.

EXCH Exchange

250 A I X Y
0 8’) I2 I3 14 17 18 35

Move the contents of location E to AC and move AC to location E.

Move Instructions

This class of instructions consists of a group for general manipulation of
single words and a special immediate mode instruction for handling an
extended address. Each of the instructions in the standard move group
handles one word, which may be changed in the process (e.g. its two halves
may be swapped). There are four instructions, each with four modes that
determine the source and destination of the word moved.

User Operations 2-3

Mode Suffix Source Destination

Basic
Immediate
Memory
Self

I
M
S

E
The word 0,E
AC
E

AC
AC
E
E, but also AC
if A is nonzero

MOVE Move

200 M A I X Y 1
0 61 89 12 13 14 17 18 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200

MOVEI Move Immediate 201

MOVEM Move to Memory 202

MOVES Move to Self 203

Notes. MOVE1 loads the word O,E into AC. If A is zero, MOVES is a no-
op that writes in memory; otherwise it is equivalent to MOVE except that
it writes in memory.

-

-

MOVS Move Swapped

204 M A I X Y
0 6-l 89 I2 13 14 17 18 35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS

MOVSI

MOVSM

MOVSS

Notes.

MOVN

Move Swapped 204

Move Swapped Immediate 205

Move Swapped to Memory 206

Move Swapped to Self 207

swapping halves in immediate mode loads the word E,O into AC.

Move Negative

I 210 M A I X Y
0 61 89 I2 13 14 17 18 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point -235 (400000 000000) set the

--

User Operations

Trap 1, Overflow and Carry I flags. (Negating the equivalent floating point
-1 x 2127 sets the flags, but this is not a normalized number.) If the source
word is zero, set Carry 0 and Carry 1. The source is unaffected, the original
contents of the destination are lost.

MOVN Move Negative 210

MOVNI Move Negative Immediate 211

MOVNM Move Negative to Memory 212

MOVNS Move Negative to Self 213

Notes. MOVNI loads AC with the negative of the word 0,E and can
neither overflow nor carry.

MOVM Move Magnitude

214 M A I X Y
0 67 89 12 13 14 17 18 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point -235
(400000 000000) set the Trap 1, Overflow and Carry 1 flags. (Negating the
equivalent floating point -1 x 2127 sets the flags, but this is not a normal-
ized number.) The source is unaffected, the original contents of the destina-
tion are lost.

MOVM Move Magnitude 214

MOVMI Move Magnitude Immediate 215

MOVMM Move Magnitude to Memory 216

MOVMS Move Magnitude to Self 217

Notes. The word O,E is equivalent to its magnitude, so MOVMI is
equivalent to MOVEI.

It is often convenient to keep a control count in the left half of an
accumulator and a local address or displacement to be used for indexing in
the right half. Suppose we wish to load 200 into the left half and 1400 into
the right half of an accumulator that is addressed symbolically as XR. If
the number 200 001400 is stored in location M, we can do this by giving the
instruction

MOVE XR,M

Of course the source program must somewhere define the value of the sym-
bol XR as an octal number between 1 and 17. If the same word, or its
negative, or with its halves swapped must be loaded on several occasions,
each transfer still requires only a single move instruction that references
M.

User Operations 2-5

The following instruction makes the result of an effective address cal-
culation available for use as a global address, even for accessing a fast
memory location from any section.

XMOVEI Extended Move Immediate

415 A I x Y

0 89 12 1314 17 18 35

If the program is running in a nonzero section, do one or the other of the
following.

If E is not a local AC address, clear AC bits O-5 and place the global
effective address E in AC bits 6-35.

If E is a local AC address, put 1 in AC left and E in AC right.

If the program is running in section 0, this instruction is called SETMI,
a Boolean instruction that performs an analogous function for section 0

(B2.4.
Notes. The form given a local AC address is that of a global AC address,

which therefore still refers to fast memory no matter what section the
address may be moved to or used in. Giving XMOVEI with an address 20 or
greater without indexing or indirection places the current PC section num-
ber in AC left, and it can thus be used to determine what section the
program is in.

Double Move Instructions1

These four instructions are principally for manipulating the double length
operands used in double precision arithmetic, fixed or floating. But they
may be used to move or negate any doubleword, i.e. the contents of a pair of
adjacent accumulators or memory locations. Two of the instructions are
simple extensions of MOVE and MOVEM to doublewords, and for them the
configuration of the operands is irrelevant. The other two are extensions of
MOVN and MOVNM, with the operand interpreted as a double precision
floating point number. They can just as well be used for fixed point num-
bers, but with a slight variation in the format. Namely a negative result
has a 0 in bit 0 of the low order word instead of a copy of the sign. For
arithmetic operations per se this difference is inconsequential, as all arith-
metic instructions ignore bit 0 of all low order words. However it could
cause a comparison of two equal double precision numbers to fail.

All of these instructions address a pair of adjacent accumulators and a
pair of adjacent memory locations. The accumulators have addresses A and
A+1 (mod 20,), the memory locations have addresses E and E+l.

’ In the KAlO these instructions are trapped as unassigned codes (62.16).

2-6 User Operations

DMOVE Double Move

I 120 1 A 111 X 1 Y
0 89 12 13 14 17 18 35

Move a doubleword from location E,E + 1 to AC,AC + 1. The memory
tions are unaffected, the original contents of the ACs are lost.

loca-

DMOVEM Double Move to Memory

0 89 12 13 14 17 I8 3s

Move a doubleword from AC,AC + 1 to location E,E + 1. The ACs are unaf-
fected, the original contents of the memory locations are lost.

Notes. Do not use the instruction DMOVEM AC,AC + 1 as its result is
indeterminate. In the KIlO do not have E and X address the same (fast)
memory location, as a page failure on the second word would then result in
a different effective address calculation when the instruction is restarted.

DMOVN Double Move Negative

171 A I X Y
0 89 I2 13 14 17 18 3s

Negate the doubleword from location E,E + 1 interpreted in double preci-
sion floating point and move it to AC,AC + 1. If the memory doubleword is
fixed point -270, set the Trap 1, Overflow and Carry 1 flags. (Negating the
equivalent floating point with fraction -1 and the maximum exponent sets
the flags, but this is not a normalized number.) If the memory doubleword
is zero, set Carry 0 and Carry 1. The memory locations are unaffected, the
original contents of the ACs are lost.

Note that the negation uses floating point conventions. Hence a nega-
tive fixed point result has the incorrect value in bit 0 of the low order word.

In the KIlO there is no overflow test as the KIlO lacks double precision
fixed point instructions. For floating point the overflow test is really unnec-
essary, as negating a correctly formatted floating point number cannot
cause overflow.

DMOVNM Double Move Negative to Memory

0 89 12 13 14 17 18 3s

Negate the doubleword from AC,AC + 1 interpreted in double precision
floating point and move it to location E,E+ 1. If the AC doubleword is fixed
point -270, set the Trap 1, Overflow and Carry 1 flags. (Negating the equiv-

June 1982 User Operations 2-7

alent floating point with fraction -1 and the maximum exponent sets the
flags, but this is not a normalized number.) If the AC doubleword is zero,
set Carry 0 and Carry 1. The ACs are unaffected, the original contents of
the memory locations are lost.

Note that the negation uses floating point conventions. Hence a nega-
tive fixed point result has the incorrect value in bit 0 of the low order word.

In the KIlO there is no overflow test as the KIlO lacks double precision
fixed point instructions. For floating point the overflow test is really unnec-
essary, as negating a correctly formatted floating point number cannot
cause overflow.

Notes. Do not use the instruction DMOVNM AC,AC + 1 as its result is
indeterminate. In the KIlO do not have E and X address the same (fast)
memory location, as a page failure on the second word would then result in
a different effective address calculation when the instruction is restarted.

Block Transfers

There are two instructions for moving blocks of data from one part of mem-
ory to another. One is restricted to acting within the section specified by
the effective address. The other can be performed only in a nonzero section,
but can move data arbitrarily anywhere in memory.

BLT Block Transfer

35 I I A l/l x I Y

0 89 I2 I.3 14 17 I8 35

Beginning at the location addressed by AC left in the section specified by E,
move words to another area in the same section beginning at the location
addressed by AC right. Continue until a word is moved to location E. The
total number of words in the block is thus ER - ACR + 1. If A& 3 E, the
BLT moves one word to location A&. If the source block is larger than 218 -
AC& it is wrapped around to the beginning of the section.’

Provided AC is not in the destination block, then at the end in the
KLlO and KSlO, AC left and right respectively contain addresses one
greater than those of the final source and destination locations referenced
(or in the case of A& > E in the KLlO, the addresses of the locations that
would have been referenced had the reverse order transfer actually taken
place). In the KIlO and KAlO, AC is indeterminate unless the interrupt
system and the pager are both off, in which case it is unaffected. In any
event, for program compatibility among processors, use of the resulting
quantity in AC is strongly discouraged.

2 Caution: In section 0 of a KLlO extended address space there is no wraparound, and the
instruction inadvertently counts into section 1.

-

User Operations June 1982

CAUTION

--
Should an interrupt or page failure occur during its execu-
tion, the BLT stores the source and destination addresses for
the next word in AC, so when the processor restarts upon the
return to the interrupted program, it actually resumes at the
correct point within the BLT. Therefore A and X must not
address the same register as this would produce a different
effective address calculation upon resumption; and the in-
struction must not attempt to load an accumulator addressed
either by A or X unless it is the final location being loaded.

Examples. This pair of instructions loads the accumulators from mem-
ory locations 2000-2017.

MOVSI 17,200O ;Put 2000 000000 in AC 17
BLT 17.17

As mentioned in the above caution, this example might not work if, e.g. AC
10 or AC 16 were used to supply the source and destination addresses. To
transfer the block in the opposite direction requires that one accumulator
first be made available to the BLT:

MOVEM 17,2017
MOVE1 17,200O
BLT 17.2016

;Move AC 17 to 2017 in memory
;Move the number 2000 to AC 17

If at the time the accumulators were loaded the program had placed in
location 2017 the control word necessary for storing them back in the same
block (ZOOO), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

A convenient way to clear a block in memory is to clear the first loca-
tion and then use a BLT to transfer the zero successively from one location
to the next. Suppose the block starts at A and contains B words.

MOVE AC,[A,,A+ll
SETZM A
BLT AC,A+B-1

For a reverse BLT procedure (highest addresses first), refer to the POP
instruction (92.10).

User Operations 2-9

XBLT Extended Block Transfer

I 123 A 1 x Y _-
0 89 12 13 14 17 18 35

F‘O I n3n I nn IA x I Y 1 El is not used.3
L VI., -- I 1

0 89 I2 1314 17 18 35

Move a block of words from one area of memory to another. The block size
and the locations of the source and destination areas are defined by the
contents of a block of three accumulators.

AC I NUMBEROFWORDSIN BLOCK I

AC+1 00 I L~~ATIONOF~OURCEBLOCK

AC+2 00 LOCATIONOFDESTINATION BLOCK

0 5 6 35

If this instruction is given in section 0, execute it as an MUUO. Otherwise
perform a forward or backward block transfer as follows.

If AC contains a positive number N, move a block of N words from a
source area beginning at the location specified by AC+l, to a destina-
tion area beginning at the location specified by AC+2, and extending
through increasing addresses. At the end AC is clear, and AC+1 and
AC+2 respectively contain addresses one greater than those of the final
source and destination locations referenced.

If AC contains a negative number -N, move a block of N words from a
source area beginning at a location one less than that specified by
AC+l, to a destination area beginning at a location one less than that
specified by AC+2, and extending through decreasing addresses. At the
end AC is clear, and AC+1 and AC+2 respectively contain the addresses
of the final source and destination locations referenced.

CAUTION

This instruction uses three accumulators, and under no cir-
cumstances should any of these three be part of either the
source or destination block. Because of the possibility of an
interrupt or page failure, the contents of these accumulators
even as a source cannot be guaranteed. And in any event, use
of XBLT for moving an AC block is quite unnecessary, as a
simple BLT can move fast memory to any section.

-’

3 I, X and Y are reserved and should be zero,

2-10 User Operations

2.2 Fixed Point Arithmetic

For fixed point arithmetic the PDP-10 has instructions for performing ad-
dition, subtraction, multiplication and division of numbers in single and
double precision fixed point format ($1.41, although double precision is not
available in the KIlO or KAlO. The processor can also do arithmetic shift-
ing - which is essentially multiplication by a power of 2 - but those
instructions are discussed with logical shifting and rotating (02.5). For sin-
gle precision the add and subtract instructions involve only single length
numbers, whereas multiply supplies a double length product, and divide
uses a double length dividend. There are also integer multiply and divide
instructions that involve only single length numbers and are especially
suited for handling smaller integers, particularly those of eighteen bits or
less such as addresses, bytes, and character codes. For double precision the
add and subtract instructions involve only double length numbers, whereas
multiply supplies a quadruple length product, and divide uses a quadruple
length dividend. In all cases the position of the binary point is arbitrary,
and the programmer may adopt any point convention. Even the integer
multiply and divide instructions can be used for small fractions provided
the programmer keeps track of the binary point. For convenience in the
following, all operands are assumed to be integers (binary point at the
right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than
can be accommodated. Carry 0 and Carry 1 actually detect carries out of
bits 0 and 1 in certain instructions that employ fixed point arithmetic oper-
ations: the add and subtract instructions treated here, the move instruc-
tions that produce the negative or magnitude of the word moved ($2.11, and
the arithmetic test instructions that increment or decrement the test word
(42.6). In these instructions an incorrect result is indicated - and the Over-
flow flag set - if the carries are different, i.e. if there is a carry into the
sign but not out of it, or vice versa. Overflow is determined directly from
the carries, not from the carry flags, as their states may reflect events in
previous instructions. The Overflow flag is also set by No Divide being set,
which means the processor has failed to perform a division because the
magnitude of the dividend is greater than or equal to that of the divisor, or
in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica-
tion, too large a number to convert to fixed point (62.31, and loss of signifi-
cant bits in left arithmetic shifting. Any condition that sets Overflow also
sets the Trap 1 flag ($2.9).

These flags can be read and controlled by certain program control in-
structions ($02.9, 2.16), but overflow is usually handled by trapping
through the setting of Trap 1 (82.9). The KAlO lacks the trapping feature,
so its program must make direct use of the Overflow flag, which is avail-
able as a processor condition (via an in-out instruction) that can request a
priority interrupt if enabled (85.6). In any event, user overflow is handled
by the Monitor according to instructions from the user, as described in
Chapter 3 of the appropriate Monitor Calls manual. The conditions de-

User Operations 2-11

tected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before an instruction if they are to
give meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected. Besides
indicating error types, the carry flags facilitate performing multiple preci-
sion arithmetic.

Single Precision Instructions

As noted above the numbers manipulated by these instructions are single
length except for double length products and dividends. Such double length
fixed point numbers are in AC,AC + 1, where the magnitude is the 70-bit
string in bits 1-35 of the two words, the sign is in bit 0 of the high order
word, and bit 0 of the low order word contains a copy of the sign. All six
instructions have four modes that determine the source of the non-AC oper-
and and the destination of the result.

-

Mode

Basic
Immediate
Memory
Both

Suffix

I
M
B

Source of non-
AC operand

E
The word O,E
E
E

Destination
of result

AC
AC
E
AC and E

-

ADD Add

270 151 A I X Y
0 67 89 12 13 14 17 18 35

Add the operand specified by M to A(’ and place the result in the specified
destination. If the sum is 3 235 set Trz D 1, Overflow and Carry 1; the result
stored has a minus sign but a magnitr de in positive form equal to the sum
less 235. If the sum is < -235 set Trap 1, Overflow and Carry 0; the result
stored has a plus sign but a magnitud in negative form equal to the sum
plus 2 35 Set both carry flags if both su lmands are negative, or their signs .

differ and their magnitudes are equal t r the positive one is the greater in
magnitude.

ADD Add

ADDI Add Immediate

ADDM Add to Memory

ADDB Add to Both

270

271

272

273

2-12 User Operations

SUB Subtract

I 274 IM[A 111 x 1 Y I
0 67 89 12 I3 14 I7 IS 35

Subtract the operand specified by M from AC and place the result in the
specified destination If the difference is 2 235 set Trap 1, Overflow and
Carry 1; the result stored has a minus sign but a magnitude in positive
form equal to the difference less 2 35. If the difference is < -235 set Trap 1,
Overflow and Carry 0; the result stored has a plus sign but a magnitude in
negative form equal to the difference plus 235. Set both carry flags if the
signs of the operands are the same and AC is the greater or the two are
equal, or the signs of the operands differ and AC is negative.

SUB Subtract 274

SUBI Subtract immediate 275
SUBM Subtract to Memory 276

SUBB Subtract to Both 297

Multiply

h7 8’3 I2 I.3 14 I7 111 3s

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in AC + 1. If both operands are -235
set Trap 1 and Overflow; the double length result stored is -270.

MUL
MULI

MULM

MULB

Multiply 224
Multiply Immediate 225
Multiply to Memory 226
Multiply to Both 227

CAUTION

In the KAlO,,an AC operand of -235 is treated as though it
were + 235, producing the incorrect sign in the product.

User Operations 2-13

IMUL Integer Multiply

220 piq A 111 x 1 Y
0 61 89 12 13 14 17 18 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Trap 1 and Overflow if the product is 2 235 or < -235 (i.e. if the high order
word of the double length product is not null); the high order word is lost.

IMUL

IMULI

IMULM

IMULB

Integer Multiply

Integer Multiply Immediate

Integer Multiply to Memory

Integer Multiply to Both

220

221

222

223

DIV Divide

234 IM] A 111 X 1 Y 1
0 67 89 I2 13 14 17 I8 35

If the high order word of the magnitude of the double length number in
AC,AC + 1 is greater than or equal to the magnitude of the operand speci-
fied by M, set Trap 1, Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in
AC,AC + 1 by the specified operand, calculating a quotient of 35 magnitude
bits including leading zeros Place the unrounded quotient in the specified
destination. If M specifies AC as a destination, place the remainder, with
the same sign as the dividend, in AC + 1.

DIV Divide 234

DIVI Divide Immediate 235

DIVM Divide to Memory 236

DIVB Divide to Both 237

Notes. The magnitude restriction is required since the quotient devel-
oped would exceed 36 bits.

IDIV Integer Divide

230 IA41 A 111 X 1 Y I
0 67 89 12 13 14 17 18 35

If the operand specified by M is zero, or AC contains -235 and the operand
specified by M is -1 (except in the KSlO), set Trap 1, Overflow and No
Divide, and go immediately to the next instruction without affecting the
original AC or memory operand in any way. Otherwise divide AC by the

2-14 User Operations June 1982

-’

i

specified operand, calculating a quotient of 36 magnitude bits including
leading zeros. Place the unrounded quotient in the specified destination If
M specifies AC as the destination, place the remainder, with the same sign
as the dividend; in AC + 1.

IDIV integer Divide 230

IDlVl Integer Divide Immediate 231

IDIVM Integer Divide to Memory 232

IDIVB Integer Divide to Both 233

CAIJTION

In the KSlO, dividing -235 by -1 gives -235 with no error
indication. In the KAlO, KIlO, and a KLlO with microcode
version before 271 (which includes all single-section KLlOs),
the overflow action is also triggered by attempting to divide
-2% by + 1.

Double Precision Instructions4

There are just four instructions for the four basic operations, and they have
no modes. All use AC and memory operands and place the result in the
accumulators. Memory operands are double length in location E,E + 1. Most
AC operands are double length in AC,AC + 1, but products and dividends
are quadruple length in AC,AC + l,AC + 2,AC + 3, and the double length
remainder in division is placed in AC +2,AC +3. Double length numbers
have the same format as the products and dividends of single precision
instructions discussed above. In quadruple length numbers AC contains the
highest order word; the magnitude is the 140-bit string in bits 1-35 of the
four words, the sign is in bit 0 of the highest order word, and copies of the
sign are kept in bit 0 of the other three words.

DADD Double Add

I 114 1 A 111 x 1 Y 1
u a9 I2 13 14 17 18 35

Add the operand in location E,E + 1 to AC,AC + 1 and place the result in
AC,AC + 1. If the sum is 3 270, set Trap 1, Overflow and Carry 1; the result
stored has a minus sign but a magnitude in positive form equal to the sum
less 270. If the sum is < -270, set Trap 1, Overflow and Carry 0; the result
stored has a plus sign but a magnitude in negative form equal to the sum
plus 270. Set both flags if both summands are negative, or their signs differ
and their magnitudes are equal or the positive one is the greater in
magnitude.

4 In the KIlO and KAlO these instructions are trapped as unassigned codes.

June 1982 User Operations 2-15

DSUB Double Subtract

IJ a9 12 1314 17 18 35

Subtract the operand in location E,E + 1 from AC,AC + 1 and place the re-
sult in AC,AC + 1. If the difference is 2 270, set Trap 1, Overflow and Carry
1; the result stored has a minus sign but a magnitude in positive form equal
to the difference less 2 70. If the difference is < -270, set Trap 1, Overflow
and Carry 0; the result stored has a plus sign but a magnitude in negative
form equal to the difference plus 2 70. Set both carry flags if the signs of the
operands are the same and AC,AC + 1 is the greater or the two are equal, or
the signs of the operands differ and AC,AC + 1 is negative.

DMUb Double Multiply

I 116 1 A IfI X 1 Y I
0 a9 12 1314 17 IO 35

Multiply AC,AC + 1 by the operand in location E,E + 1 and place the result
in AC-AC +3. If both operands are -270, set Trap 1 and Overflow; the
quadruple length result stored is -214’.

DDIV Double Divide

I 117 A I X Y 1
0 a9 12 1314 17 la 35

If the high order doubleword of the magnitude of the quadruple length
number in AC-AC +3 is greater than or equal to the magnitude of the
operand in location E,E + 1, set Trap 1, Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide the quadruple jength num-
ber contained in the accumulators by the operand in location E,E + 1, calcu-
lating a quotient of 70 magnitude bits including leading zeros. Place the
unrounded quotient in AC,AC + 1, and the double length remainder, with
the same sign as the dividend, in AC + 2,AC + 3.

-

2-16 User Operations

2.3 Floating Point Arithmetic”

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of ‘21,
performing addition, subtraction, multiplication and division of numbers in
single and double precision floating point formats, converting between dif-
ferent range floating formats, and converting numbers from fixed format to
floating and vice versa. Except for conversion operations, instructions
treated here interpret all operands as floating point numbers in the formats
given in $1.4, and generate results in those formats. The reader is strongly
advised to reread §1.4 if he does not remember the formats in detail

For the four standard arithmetic operations in single precision, the
program has a choice of modes, determining mostly the destination of the
result, and can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length
operands. Instructions without rounding save time m one-word operations
where rounding is of no significance. Actually the result is formed in a
double length register in addition, subtraction and multiplication, wherein
any bits of significance in the low order part supply information for normal-
ization, and then for rounding if requested. Consider addition as an exam-
ple. Before adding, the processor right shifts the fractional part of the
operand with the smaller exponent until its bits correctly match the bits of
the other operand in order of magnitude. Thus the smaller operand could
disappear entirely, having no effect .on the result (“result” shall always be
taken to mean the information (one word or two) stored by the instruction,
regardless of the number of significant bits it contains or even whether it is
the correct answer). In any event, the significance of the result depends on
the relative values of the operands For example, a subtraction involving
two like-signed numbers whose exponents are equal and whose fractions
differ only in the LSB gives a result containing only one bit of significance.
In division the processor always calculates a one-word quotient that re-
quires no normalization if the original operands are normalized. An extra
quotient bit is calculated for rounding when requested.

Among the remaining floating point instructions, those that convert
between number types in standard range operate only on single words.
Instructions that convert to floating point assume the operand is an integer
and always normalize and round the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the
program. The instructions for the four standard operations using double
precision have no modes. In division the processor calculates a two-word
rounded quotient that is already normalized if the original operands are
normalized. In addition, subtraction and multiplication, the result is
formed in a triple length register, wherein bits of significance in the lowest
order part supply information for normalization and then for rounding.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or
too small to be accommodated or a division cannot be performed because of

5 In a KAlO without floating point hardware, all of the instructions presented in this section
are trapped as unassigned codes ($2.16).

June 1982 User Operations

the relative values of dividend and divisor. Except where the result would
be in fixed point form, any of these circumstances sets Overflow and
Floating Overflow. If only these two are set, the exponent of the answer is
too large; if Floating Underflow is also set, the exponent is too small No
Divide being set means the processor failed to perform a division, an event
that can be produced only by a zero divisor if all nonzero operands are
normalized. Any condition that sets Overflow also sets the Trap 1 flag.
These flags can be read and controlled by certain program control instruc-
tions (BEi2.9, 2.161, but overflow is usually handled by trapping through the
setting of Trap 1. The KAlO lacks the trapping feature, so its program must
make direct use of Overflow and Floating Overflow, which are available as
processor conditions (via an in-out instruction) that can request a priority
interrupt if enabled ($5.6). The conditions detected can only set the arith-
metic flags and the hardware does not clear them, so the program must
clear them before a floating point instruction if they are to give meaningful
information about the instruction afterward. However, the program can
check the flags following a series of instructions to determine whether the
entire series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and it normalizes a nonzero result.6 An oper-
and with a zero fraction and a nonzero exponent can give wild answers in
additive operations because of extreme loss of significance; e.g. adding l/2 x

22 and 0 x 26g gives a zero result, as the first operand (having a smaller
exponent) looks smaller to the processor and is shifted to oblivion. A num-
ber with a 1 in bit 0 and OS in bits 9-35 is not simply an incorrect represen-
tation of zero, but rather an unnormalized “fraction” with value -1. This
unnormalized number can produce an incorrect answer in any operation.
But note that such malformed numbers must be created deliberately by the
programmer - the processor never produces them.

6 The processor normalizes the result by shifting the fraction and adjusting the exponent to
compensate for the change in value. Each shift and accompanying exponent adjustment
thus multiply the number both by 2 and by % simultaneously, leaving its value
unchanged.

Note that with normalized operands, the processor uses at most two bits of informa-
tion from the lowest order part to normalize the result. In multiplication this is obvious,
since squaring the minimum fractional magnitude I/Z gives a result of l/4. In an addition or
subtraction of numbers that differ greatly in order of magnitude, the result is determined
almost completely by the operand of greater order. A subtraction involving two like-signed
numbers with equal exponents requires no shifting beforehand so there is no information
in the lowest order part. Hence an addition or subtraction never requires shifting both
before the operation and in the normalization; when there is no prior shifting, the normal-
ization brings in OS.

‘-

-

%18 User Operations June 1982

Single Precision with Rounding

There are four instructions that use only one-word operands and store a
single length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSBe7

The rounding instructions have four modes that determine the source
of the non-AC operand and the destination of the result. These modes are
like those of fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix AC operand of result

Basic E AC
Immediate I The word E,O AC
Memory M E E
Both B E AC and E

Note however that floating point immediate uses E,O as an operand, not
03. In other words the half word E is interpreted as a sign, an 8-bit expo-
nent, and a g-bit fraction.

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is >
127, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 256 less than the correct one. If < -128, set Trap 1, Overflow,
Floating Overflow and Floating Underflow; the result stored has an expo-
nent 256 greater than the correct one.

FADR Floating Add and Round

I44 111 A I X Y I
‘) 67 89 12 I3 14 17 In J 5

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing OS into bit positions vacated at the right, round
the high order part, test for exponent overflow or underflow as described
above, and place the result in the specified destination

FADR Floating Add and Round 144

FADRI Floating Add and Round immediate 145

FADRM Floating Add and Round to Memory 146

FADRB Floating Add and Round to Both 147

7 In the hardware the rounding operation is actually somewhat more complex than stated
here. If the result is negative, the hardware combines rounding with placing the high
order word in twos complement form by decreasing its magnitude if the low order part is <
5 LSB. Moreover an extra single-step renormalization occurs if the rounded word is no
longer normalized.

June 1982 User Operations 2-19

FSBR Floating Subtract and Round

I 154 IV A I X Y
0 bl 89 I2 13 14 17 111 3s

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing OS into bit positions va-
cated at the right, round the high order part, test for exponent overflow or
underflow as described above, and place the result in the specified
destination.

FSBR Floating Subtract and Round 154

FSBRI Floating Subtract and Round Immediate 155

FSBRM Floating Subtract and Round to Memory 156

FSBRB Floating Subtract and Round to Both 157

FMPR Floating Multiply and Round

164 /II A / X Y 1 0 67 89 I2 I3 I4 I7 In 35

Floating multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination Otherwise
normalize the double length product bringing OS into bit positions vacated
at the right, round the high order part, test for exponent overflow or under-
flow as described above, and place the result in the specified destination.

FMPR Floating Multiply and Round 164

FMPRI Floating Multiply and Round Immediate 165

FMPRM Floating Multiply and Round to Memory 166

FMPRB Floating Multiply and Round to Both 167

FDVR Floating Divide and Round

I 174 ill 1 A //I x 1 Y 1
0 bl no I2 I3 I4 I7 In 3s

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in the operand specified by M. set Trap 1, Overflow, Floating
Overflow and No Divide, and go immediately to the next instruction with-
out affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand
specified by M, calculating a quotient fraction of 28 bits (this includes an
extra bit for rounding). If the fraction is zero, clear the specified destina-
tion. Otherwise round the fraction using the extra bit calculated. If the

-

2-20 User Operations June 1982

original operands were normalized, the single length quotient will already
be normalized; if it is not, normalize it bringing OS into bit positions va-
cated at the right. Test for exponent overflow or underflow as described
above, and place the result in the specified destination.

t=DVR Floating Divide and Round 174

FDVRI Floating Divide and Round Immediate 175

FDVRM Floating Divide and Round to Memory 176

FDVRB Floating Divide and Round to Both 177

Notes. Division fails if the divisor is zero, but the no-divide condition
can otherwise be satisfied only if at least one operand is unnormalized.

Single Precision without Rounding

Instructions that do not round are faster for processing floating point num-
bers with fractions containing fewer than 27 significant bits. They perform
the four standard arithmetic operations with normalization but without
rounding. All use AC and the contents of location E as operands and have
three modes. They lack an immediate mode, but are otherwise analogous to
the single precision instructions with rounding.

Mode Suffix Effect

Basic High order word of result stored in AC.
Memory M High order word of result stored in E.
Both B High order word of result stored in AC and E.

In each of these instructions, the exponent that results from normaliza-
tion is tested for overflow or underflow. If the exponent is > 127, set Trap 1,
Overflow and Floating Overflow; the result stored has an exponent 256 less
than the correct one. If < -128, set Trap 1, Overflow, Floating Overflow
and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FAD Floating Add

140 M A I X Y Mf 1.
0 67 89 12 I3 14 19111 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M. Otherwise normal-
ize the double length sum bringing OS into bit posit.ions vacated at the

June 1982 User Operations 2-21

right, test for exponent overflow or underflow as described above, and place
the high order word of the result in the specified destination.’

FAD Floating Add 140
FADM Floating Add to Memory 142

FADB Floating Add to Both 143

FSB Floating Subtract

I 150 M A / X Y Mf 1.

0 67 89 12 13 14 17 18 35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M. Oth-
erwise normalize the double length difference bringing OS into bit positions
vacated at the right, test for exponent overflow or underflow as described
above, and place the high order word of the result in the specified
destination.”

FSB
FSBM

FSBB

Floating Subtract

Floating Subtract to Memory

Floating Subtract to Both

150

152

153

-

FMP Floating Multiply

1 160 1M1 A 111 X 1 Y M+ 1.
0 67 a9 12 13 14 17 ia 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M. Other-
wise normalize the double length product bringing OS into bit positions
vacated at the right, test for exponent overflow or underflow as described
above, and place the high order word of the result in the specified
destination.

s Caution: In single precision addition the term with the smaller exponent is right shifted in
a double length register, specifically a register with 54 magnitude bits. Now if the differ-
ence in the exponents is CC 54. there is at least one significant bit after the shift (assuming
normalized operands); and if the difference is :.> 72 (64 in the KIlO), the hardware throws
the term away’by substituting zero. But when the exponent difference lies in the range 54
to 72 (64). the procedure disposes of all significant bits without actually substituting zero.
This means that if the shifted term is positive it appears in the addition as all OS, but if
negative it appears as all 1s. The latter case gives an answer that is less by one LSB.

g The caution given above for addition applies also to subtraction, which is done by adding
with the minuend negated. Here the lesser answer (as against a true zero substitution)
occurs when the term with the smaller exponent is negative after the minuend negation,
i.e. when it is a negative subtrahend but a positive minuend.

2-22 User Operations June 1982

FMP Floating Multiply 160
FMPM Floating Multiply to Memory 162

FMPB Floating Multiply to Both 163

FDV Floating Divide

140 IZl A I x Y Mf 1.
0 67 89 12 I3 14 17 IX 35

If the magnitude of the fraction in AC is greater than or equal to twice the
magnitude of the fraction in location E, set Trap 1, Overflow, Floating
Overflow and No Divide, and go immediately to the next instruction with-
out affecting the original AC or memory operand in any way.

If division can be performed, floating divide AC by the contents of
location E. Calculate a quotient fraction of 27 bits. If the fraction is zero,
clear the destination specified by M. A quotient with a nonzero fraction will
already be normalized if-the original operands were normalized; if it is not,
normalize it bringing OS into bit positions vacated at the right. Test for
exponent overflow or underflow as described above, and place the single
length quotient in the specified destination.

NOTE

In the KLlO and KSlO, a negative quotient is represented by
a twos complement only when the remainder is zero - other-
wise it is a ones complement. In the KIlO and KAlO, a twos
complement is used for a negative quotient regardless of the
value of the remainder.

FDV Floating Divide

FDVM Floating Divide to Memory

FDVB Floating Divide to Both

Notes. Division fails if the divisor is
can otherwise be satisfied only if at least

Standard Range Double Precision’”

170
172

173

zero, but the no-divide condition
one operand is unnormalized.

There are four instructions for the four basic operations, and they have no
modes All use AC and memory operands and place the result in the accu-
mulators Memory operands are double length in location E,E + 1; AC
operands and results are double length in AC,AC + 1. All operands are
interpreted as double precision floating point numbers. All results are nor-
malized regardless of the status of the original operands, except that in
KIlO multiplication and division the result is guaranteed to be normalized
only when the original operands are normalized. Except in MI10 division,
the result is rounded. The rounding function is the same as that used in

*’ In the KAlO these instructions are trapped as unassigned codes.

June 1982 User Operations 2-23

single precision: if the part of the answer being dropped (the low order part
of the fraction) is greater than or equal in magnitude to one half the LSB of
the double length part being retained, the magnitude of the latter part is
increased by one LSB (with appropriate adjustment for a twos complement
negative).

In each of these instructions, the exponent that results from normaliza-
tion and rounding (if done) is tested for overflow or underflow. If the expo-
nent is > 127, set Trap 1, Overflow and Floating Overflow; the result stored
has an exponent 256 less than the correct one. If < -128, set Trap 1, Over-
flow, Floating Overflow and Floating Underflow; the result stored has an
exponent 256 greater than the correct one.

DFAD Double Floating Add

I 110 A I X Y 1
0 a9 12 1314 17 18 35

Floating add the operand in location E,E + 1 to AC,AC + 1. If the fraction in
the sum is zero, clear AC,AC + 1. Otherwise normalize the triple length
sum bringing OS in at the right, round the high order double length part,
test for exponent overflow or underflow as described above, and place the
result in AC,AC + 1. Note: The KIlO zero test inspects only the high order
70 bits in the fraction.

-

DFSB Double Floating Subtract

111 A I X Y I
0 a9 12 1314 17 la 35

Floating subtract the operand in location E,E + 1 from AC,AC + 1. If the
fraction in the difference is zero, clear AC,AC + 1. Otherwise normalize the
triple length difference bringing OS into bit positions vacated at the right,
round the high order double length part, test for exponent overflow or un-
derflow as described above, and place the result in AC,AC + 1. Note: The
KIlO zero test inspects only the high order 70 bits in the fraction

DFMP Double Floating Multiply

I 112 A I X Y 1
0 a9 12 I3 14 17 18 3s

KLlO and KSlO: Floating multiply AC,AC + 1 by the operand in location
E,E + 1. If the product is zero, clear AC,AC + 1,. Otherwise normalize the
product, round the high order double length part, test for exponent overflow
and underflow as described above, and place the result in AC,AC + 1.

KIlO: Floating multiply AC,AC + 1 by the operand in location E,E+ 1.

2-24 User Operations June 1982

If the high order 70 bits of the fraction in the product are zero, clear
AC,AC -t= 1. Otherwise, if there are any bits of significance among the high
order 35, do at most one normalization shift if required; if the high order 35
bits are zero, shift the fraction left 35 places (adjusting the exponent), and
then do at most one normalization shift if required. Round the high order
double length part, test for exponent overflow and underflow as described
above, and place the result in AC,AC f 1. The 35bit shift can be done only
if the original operands are unnormalized. The single normalization shift
produces a normalized result for normalized operands.

DFDV Double Floating Divide

I 113 A I X Y I
0 a9 12 13 14 17 la 35

If the magnitude of the fraction in the operand in AC,AC + 1 is greater than
or equal to twice that of the fraction in the operand in location E,E + 1, set
Trap 1, Overflow, Floating Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand
in any way.

If the division can be performed, floating divide the AC operand by the
memory operand, calculating a quotient fraction of 63 bits including one for
rounding (62 in the KIlO). If the fraction is zero, clear AC,AC + 1. Other-
wise in the KLlO normalize the quotient and round it using the extra bit
calculated. Test for exponent overflow or underflow as described above, and
place the quotient in AC,AC + 1. The remainder is lost. Division fails if the
divisor is zero, but the no-divide condition can otherwise be satisfied only if
at least one operand is unnormalized.

Notes. In the KIlO the quotient is normalized if the original operands
are normalized.

Expanded Range Double Precision”

There are four instructions for the four basic operations in G format, and
they have no modes. All use AC and memory operands and place the result
in the accumulators. Memory operands are double length in location
E,E + 1; AC operands and results are double length in AC,AC + 1. All
operands are interpreted as G format double precision floating point num-
bers. All results are normalized and rounded regardless of the status of the
original operands. The rounding function is the same as that used in single
precision: if the part of the answer being dropped (the low order part of the
fraction) is greater than or equal in magnitude to one half the LSB of the
double length part being retained, the magnitude of the latter part is in-
creased by one LSB (with appropriate adjustment for a twos complement
negative).

‘I These instructions are trapped as unassigned codes except in a KLlO that runs microcode
version 271 or greater.

June 1982 User Operations 2-25

In each of these instructions, the exponent that results from normaliza-
tion and rounding is tested for overflow or underflow. If the exponent is >
1023, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 2048 less than the correct one. If < -1024, set Trap 1, Overflow,
Floating Overflow and Floating Underflow; the result stored has an expo-
nent 2048 greater than the correct one.

GFAD G Format Floating Add

1 102 1 A 111 X 1 Y I
0 89 I2 1314 17 18 35

Interpreting all numbers in G format, floating add the operand in location
E,E + 1 to AC,AC + 1. If the fraction in the sum is zero, clear AC,AC + 1.
Otherwise normalize the triple length sum bringing OS in at the right,
round the high order double length part, test for exponent overflow or un-
derflow as described above, and place the result in AC,AC + 1.

GFSB G Format Floating Subtract

103 ‘4 I x Y I
0 a9 121314 17 IU 35

Interpreting all numbers in G format, floating subtract the operand in loca-
tiofi E,E + 1 from AC,AC + 1. If the fraction in the difference is zero, clear
AC,AC + 1. Otherwise normalize the triple length difference bringing OS
into bit positions vacated at the right, round the high order double length
part, test for exponent. overflow or underflow as described above, and place
the result in AC,AC + 1.

GFMP G Format Floating Multiply

106 A I X Y 1
89 12 13 I4 I7 18 35

Interpreting all numbers in G format, floating multiply AC,AC + 1 by the
operand in location E,E + 1. If the product is zero, clear AC,AC + 1. Other-
wise normalize the product, round the high order double length part, test
for exponent overflow and underflow as described above, and place the re-
sult in AC,AC + 1.

2-26 User Operations June 1982

GFBV G Format Floating Divide

I 107 A / x Y I
0 89 12 1314 17 I8 35

If the magnitude of the G format fraction in the operand in AC,AC + 1 is
greater than or equal to twice that of the G format fraction in the operand
in location E+?3 + 1, set Trap 1, Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original
AC or memory operand in any way.

If the division can be performed, floating divide in G format the AC
operand by the memory operand, calculating a quotient fraction of 60 bits
including one for rounding. If the fraction is zero, clear AC,AC + 1. Other-
wise normalize the quotient and round it using the extra bit calculated.
Test for exponent overflow or underflow as described above, and place the
quotient in AC,AC + 1. The remainder is lost. Division fails if the divisor is
zero, but the no-divide condition can otherwise be satisfied only if at least
one operand is unnormalized.

Number Conversion’2

Besides the groups of instructions for performing standard arithmetic oper-
ations with fixed and floating point numbers in the various formats, there
is also a group for translating numbers from one format to another. This
group includes several that are strictly single precision between floating
and fixed, and over twice as many that handle conversion between G for-
mat and single or double precision fixed point as well as single precision
floating point. In the following presentation these instructions are grouped
in the way they would most likely be associated in use; but there are com-
mon characteristics that cross over these categories, in particular having to
do with the rounding of the result.

If the result of a conversion is a floating point number in any format,
the rounding function is the same as that used by the standard floating
point arithmetic instructions described above. A fixed point result on the
other hand may be rounded or simply truncated, which corresponds to
whether the instruction mnemonic ends in “FIXR” or just “FIX”.

Truncation produces the integer of largest magnitude less than or equal
to the magnitude of the original number. For example, a number > + 1
but < + 2 becomes + 1; a number < -1 but > -2 becomes -1. This
truncation function is that used in Fortran (“fixation”). For it, the pro-
cessor drops the fractional part in a positive number, but adds one to the
integral part (as required by twos complement format) if any bits of
significance are shifted out in a negative number.

i* In the KAlO all of these instructions are trapped as unassigned codes The first three are
available in all other processors, but the remaining eight are available only in a KLlO
with microcode version 271 or greater. However the four instructions that convert from 6
format to fixed point are not implemented in microcode: they are instead simulated by the
Monitor.

June 1982 User Operations

Rounding is in the positive direction: the magnitude of the integral part
is increased by one if the fractional part is 2 l/z in a positive number
but > ‘/z in a negative number. For example, + 1.4 (decimal) is rounded
to + 1, whereas + 1.5 and + 1.6 become +2; but with negative numbers,
-1.4 and -1.5 become -1, whereas -1.6 becomes -2. This rounding func-
tion is the Algol standard for real to integer conversion. For it the
processor adds one to the integral part if the fractional part is 2 ‘/2 in a
positive number or (as required by twos complement format) is s l/2 in a
negative number.

The first three of the following instructions convert between fixed and
floating in single precision only; the next six are for converting between
single and double precision integers and G floating point numbers; the final
pair converts between G format and the standard range single precision
floating point that is available in all machines. In all cases the operand is
taken from location E or E,E + 1, and the converted result is placed in AC or
AC,AC + 1.

FIX Fix

I I ” __ A I X Y
0 a9 I2 1314 17 Ia 35

If the exponent of the single precision floating point number in location E is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the
binary point at the right of bit 35. For positive N, shift left bringing OS into
bit 35 and dropping null bits out of bit 1. For negative N, shift right bring-
ing null bits (OS for positive, 1s for negative) into bit 1, and then truncate to
an integer. Place the result in AC.

Notes. The overflow test checks for a value 2 23’ assuming the operand
is normalized.

.FIXR Fix and Round

I 2 0 A I X Y I
0 a9 I2 13 14 17 18 35

If the exponent of the single precision floating point number in location E is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended fraction
N = X - 27 places to the correct position for its order of magnitude with the

2-28 User Operations June 1982

/
-

binary point at the right of bit 35. For positive N, shift left bringing OS into
bit 35 and dropping null bits out of bit 1. For negative N, shift right bring-
ing null bits (OS for positive, 1s for negative) into bit 1, and then round the
integral part. Place the result in AC.

Notes. The overflow test checks for a value 2 2% assuming the operand
is normalized.

FLTR Float and Round

0 09 121314 1718 35

Shift the magnitude part of the fixed point integer from location E right
eight places, insert the exponent 35 (in excess 128 form) into bits l-8 to
move the shifted binary point to the left of bit 9 (35 = 27 + 81, and normal-
ize the fraction bringing first the bits originally shifted out and then OS into
bit positions vacated at the right. If fewer than eight bits (left shifts) are
needed to normalize, use the next bit to round the single length fraction.
Place the result in AC.

Since the largest single precision fixed point magnitude (without con-
sidering sign) is 235 - 1, a floating point number with exponent greater than
35 (and assumed normalized) cannot be converted to single precision fixed
point. There is no limit in the opposite direction, but precision can be lost as
floating point format provides fewer significant bits. A fixed integer greater
than 2*’ - 1 cannot be represented exactly in floating point unless all its
significant bits are clustered within a group of twenty-seven

GFIX G Format Fix

I 123 A p x 1 Y
I 0 x 9 12 I:, 14 Ii I” :,?I

EO Bits 9-12 = 0.
H L1 Ii II(

If the exponent of the G format floating point number in location E,E + f is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E$+ 1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X - 24 places to the correct position for its order of
magnitude with the binary point at the right of bit 35. For positive N, shift
left bringing bits from the low order word into bit 35 and dropping null bits

June 1982 User Operations 2-28.1

out of bit 1; for negative N, shift right bringing null bits (OS for positive, 1s
for negative) into bit 1. Then truncate to a single length integer and place
the result in AC.

Notes. The overflow test checks for a value 2 235 assuming the operand
is normalized.

GFIXR G Format Fix and Round

I 123 1 A IZl X 1 Y 1 0 H 9 IZ I:, 14 li 1H :,5

EO 026 I 00 111 x 1 Y Bits 9-12 = 0.
0 x 9 ,z I:, 1.l Ii IN .,5

If the exponent of the G format floating point number in location E,E+ 1 is
> 35, set Overflow and Trap 1, and go immediately to the next instruction
without affecting AC or the contents of E,E + 1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X - 24 places to the correct position for its order of
magnitude with the binary point at the right of bit 35. For positive N, shift
left bringing bits from the low order word into bit 35 and dropping null bits
out of bit 1; for negative N, shift right bringing null bits (OS for positive, 1s
for negative) into bit 1. Then round the integral part and place. the result in
AC. If rounding produces the number 235, set Overflow and Trap 1; the
result stored is actually -235.

Notes. The initial overflow test checks for a value 2 235 assuming the
operand is normalized. Rounding can overflow only if the original operand
has exponent 35 and fraction 2 1 - 2”” (in other words the fraction is
positive and begins with a string of thirty-six Is).

GFLTR G Format Float and Round

EO 030 I00 I x Y Bits 9-12 = 0.
I) R !i IZ ,:I I4 Ii LH u

Shift the magnitude part of the fixed point integer from location E right
eleven places in a double length register with 0 bits at the right, insert the
exponent 35 (in excess 1024 form) into bits l-11 to move the shifted binary
point to the left of bit 12 (35 = 24 + ll), and normalize the now double
length fraction bringing OS into bit 71. Place the G format result in
AC,AC + 1.

Notes. No rounding can occur as the fraction contains fewer than fifty-
nine significant bits.

2-28.2 User Operations June 1982

GDFIX G Format Double Fix

EO Bits 9-12 = 0.
0 IT I”

If the exponent of the G format floating point number in location E,E + 1 is
> 70, set Overflow and Trap 1, and go immediately to the next instruction
without affecting the ACs or the contents of E,E + 1 in any way..

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X - 59 places to the correct position for its order of
magnitude with the binary point at the right of bit 71. For positive N, shift
left bringing OS into bit 71 and dropping null bits out of bit 1. For negative
N, shift right bringing null bits (OS for positive, 1s for negative) into bit 1,

and then truncate to a double length integer. Place the result in AC,AC + 1.
Notes. The overflow test checks for a value b 27” assuming the operand

is normalized.

GDFIXR G Format Double Fix and Round

123 1 A pi x 1 Y
I

EO 025 00 I x Y Bits 9-12 = 0.
0 x !i IP I:! I4 I; ITi ‘Ii

If the exponent of the G format floating point number in location E,E+ 1 is
> 70, set Overflow and Trap 1, and go immediately to the next instruction
without affecting the ACs or the contents of E,E + 1 in any way.

Otherwise replace the exponent X in the word from location E with bits
equal to the sign of the fraction, and shift the (now fixed) extended double
length fraction N = X - 59 places to the correct position for its order of
magnitude with the binary point at the right of bit 71. For positive N, shift
left bringing OS into bit 71 and dropping null bits out of bit 1. For negative
N, shift right bringing null bits (OS for positive, 1s for negative) into bit 1,
and then round the ‘double length integral part. Place the result in
AC,AC + 1.

Notes. The overflow test checks for a value L 2”’ assuming the operand
is normalized.

June 1982 User Operations ‘2-28.3

/ DGFLTR Double G Format Float and Round

I 123 1 A 111 X I Y I -

EO 027 1 00 111 x 1 Y Bits 9-12 = 0.
0 x 9 I2 13 IQ Ii 18 :,i

Shift the magnitude part of the double length fixed point integer from
location E,E + 1 right eleven places, insert the exponent 70 (in excess 1024
form) into bits l-11 to move the shifted binary point to the left of bit 12 (70
= 59 + ll), and normalize the fraction bringing first the bits originally
shifted out and then OS into bit positions vacated at the right. If fewer than
eleven bits (left shifts) are needed to normalize, use the next bit to round
the double length fraction. Place the result in AC,AC + 1.

GSNGL G Format to Single Precision

I 123 1 A IZI X 1 Y I 0 R 9 12 13 I4 17 I8 :33

EO 1 021 1 00 IZI x 1 Y Bits 9-12 = 0.
0 ” 9 12 I3 I, li ,* ‘I.5

If the exponent of the G format floating point number in location E,E + 1 is
> 127 or < -128, set Overflow, Floating Overflow and Trap 1 (and Floating
Underflow if < -1281, and go immediately to the next instruction without
affecting the ACs or the contents of E,E + 1 in any way.

Otherwise convert the excess 1024 exponent in the doubleword from
E,E + 1 to excess 128 form, and shift the fraction left three places to the
correct position for single precision format. Round the high order word
(reducing the fraction from 59 bits to 27), and place the resulting single
precision number in AC. If rounding produces an exponent > 127, set Over-
flow, Floating Overflow and Trap 1; the result stored has an exponent 256
greater than the correct one.

Notes. Rounding can overflow only if the original operand has exponent
127 and fractional magnitude 2 1 - 2-*‘.

GDBLE Single Precision to G Format

I 123 1 A IZI X 1 Y 1
0 ” 9 12 13 14 IT 1” ‘IA

EO 1 022 I 00 Izl x 1 Y 1 Bits 9-12= 0.
I, n 9 I2 I3 I4 IT lb .,,i

Shift the fraction of the single precision floating point number from loca-
tion E right three places in a double length register, with OS at the right, to
the correct position for G format, and convert the excess 128 exponent to
excess 1024 form. Place the resulting G format number in AC,AC + 1.

-

%28.4 User Operations June 1982

- Two floating point instructions are in a category by themselves: they
change the exponent of a number without changing the significance of the
fraction In other words they multiply the number by a power of 2, and are
thus analogous to arithmetic shifting of fixed point numbers except that no
information is lost, although the exponent can overflow or underflow. The
amount added to the exponent is specified by the result of the effective
address calculation taken as a signed number (in twos complement nota-
tion) modulo 2’ or 211 in magnitude respectively for single precision or G
format operations. In other words the effective scale factor E is the number
composed of bit 18 (which is the sign) and bits 28-35 or 25-35 of the calcu-
lation result. Hence the programmer may specify the factor directly in the
instruction (perhaps indexed) or give an indirect address to be used in
calculating it. A positive E increases the exponent, a negative E decreases
it; E is thus the power of 2 by which the number is multiplied. The scale
factor lies in the range -256 to + 255 or -1048 to + 1023.

FSC Floating Scale

I 132 A I x Y 1
0 8’) I2 I.) 14 I7 IH 3s

If the single precision fractional part of AC is zero, clear AC. Otherwise add
the &bit signed scale factor given by E to the exponent part of AC (thus
multiplying AC by 2”), normalize the resulting word bringing OS into bit
positions vacated at the right, and place the result back in AC. A negative
E is represented in standard twos complement notation, but the hardware
compensates for this when scaling the exponent.

If the exponent after normalization is > 127, set Trap 1, Overflow and
Floating Overflow; the result stored has an exponent 256 less than the
correct one. If < -128, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 256 greater than the
correct one.l**

The above instruction can be used to float a fixed number with twenty-
seven or fewer significant bits. To float an integer contained within AC bits
9-35,

FSC AC,233

inserts the correct exponent .to move the binary point from the right end to
the left of bit 9 and then normalizes (2338 = 15510 = 128 + 27). Of course
this is useful only in the KAfO, which lacks the conversion instructions.

12* Caution: In the KIlO and KAlO only, extreme overflows are not detected properly in this
instruction. An exponent > 255 sets Floating Underflow, and an exponent < -256 fails
to set it.

June 1982 User Operations 2-28.5

GFSC G Format Floating ScalelzB

123 1 A Ill X 1 Y I 0 8 9 12 13 14 17 IR 3s

EO 031 1 00 II x I Y Bits 9-12 = 0.
^_

If the G format fractional part of AC is zero, clear AC,AC + 1. Otherwise
add the 11-bit signed scale factor given by E to the exponent part of
AC,AC + 1 (thus multiplying AC,AC+ 1 by 2E), normalize the resulting
doubleword bringing OS into bit positions vacated at the right, and place the
result back in AC,AC + 1. A negative E is represented in standard twos
complement notation, but the hardware compensates for this when scaling
the exponent.

If the exponent after normalization is > 1023, set Trap 1: Overflow and
Floating Overflow; the result stored has an exponent 2048 less than the
correct one. If < -1024, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 2048 greater than the
correct one.

KAlO Software Double Precision

These instructions are regarded as obsolete - they are solely for assisting
in the KAlO software implementation of double precision floating point
arithmetic. Hence they exist only in the KAlO, the KIlO, and in those
KLlOs whose microcode implements them specifically for compatibility
with KAlO usage. A programmer who employs these instructions must be
aware that the double length format for KAlO software double precision is
not the same as the standard double precision format given in 01.4. A
double length number in KAlO software double precision format contains a
54-bit fraction, half of which is in bits 9-35 of each word. The sign and
exponent are in bits 0 and 1-8 respectively of the word containing the more
significant half, and the standard twos complement is used to form the
negative of the entire 63-bit string. In the remaining part of the less signifi-
cant word, bit 0 is 0, and bits l-8 contain a number 27 less than the
exponent, but this is expressed in positive form even though bits 9-35 may
be part of a negative fraction. For example, the number 218 + 2-18 has this
two-word representation in software double precision format:

10110010011/1000000000000000000000000001

+‘i9

35

001 111000000000000100000000000000000~

0 I 8') 35

I 12B This instruction is trapped as an unassigned code except in a KLlO that runs microcode
version 271 or greater.

-

2-28.6 User Operations June 1982

whereas its negative is

11101 101 100~011 111 111 111 111 Ill III Ill 1111
0 I 89 3s

(o(o1 111 000~111 111 Ill 100000000000000000
0 I 89 35

Routines for performing software double precision arithmetic are made
possible by the six instructions described here. Four of these do the basic
operations with normalization; the double length number in software for-
mat is used as a dividend or appears as the result in addition, subtraction
or multiplication. The remaining two instructions do not normalize: one
negates a software double length number, the other performs a special
unnormalized addition for manipulating low order parts of numbers with-
out shifting them from their proper positions. In the instructions for the
basic operations, the exponent that results from normalization is tested for
overflow or underflow. If the exponent is > 127, set Trap 1, Overflow and
Floating Overflow; the result stored has an exponent 256 less than the
correct one. If < -128, set Trap 1, Overflow, Floating Overflow and Float-
ing Underflow; the result stored has an exponent 256 greater than the
correct one.

NOTE

These instructions are solely for assiting in KAlO software
double precision floating point arithmetic. In any processor
that does not implement them, their codes are unassigned,
and they therefore execute as MUUOs rather than perform-
ing the operations given in the following descriptions.

DFN Double Floating Negate

131 A I x Y 1
0 89 I2 13 14 I7 I8 35

Negate the software double length floating point number composed of the
contents of AC and location E with AC on the left. Do this by taking the
twos complement of the number whose sign is AC bit 0, whose exponent is
in AC bits 1-8, and whose fraction is the 54-bit string in bits 9-35 of AC
and location E. Place the high order word of the result in AC; place the low
order part of the fraction in bits 9-35 of location E without altering the
original contents of bits O-8 of that location.

Notes. Usually the double length number is in two adjacent accumula-
tors, and E equals A+l. There is no overflow test, as negating a correctly
formatted floating point number cannot cause overflow.

DFN AC,AC is undefined.

User Operations 2-29

UFA Unnormalized Floating Add

Floating add the contents of location E to AC. l3 If the double length fraction
in the sum is zero, clear AC+l. Otherwise normalize the sum only if the
magnitude of its fractional part is 2 1, and place the high order part of the
result in AC+l. The original contents of AC and E are unaffected.

If the exponent of the sum following the one-step normalization is >
127, set Trap 1, Overflow and Floating Overflow; the result stored has an
exponent 256 less than the correct one.

Notes. The exponent of the sum is equal to that of the larger summand
unless addition of the fractions overflows, in which case it is greater by 1.
Exponent overflow can occur only in the latter case.

FADL Floating Add Long

I 141 A I x Y I
0 89 I2 1314 17 18 35

Floating add the contents of location E to AC l3 If the double length fraction .

in the sum is zero, clear AC,AC+l. Otherwise normalize the double length
sum bringing OS into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in AC. If the exponent of the sum is < -lOl (-128 + 27) or the low
order half of the fraction is zero, clear AC+l. Otherwise place a low order
word for a double length result in AC+1 by putting a 0 in bit 0, an exponent
in positive form 27 less than the exponent of the sum in bits 1-8, and the
low order part of the fraction in bits 9-35.

FSBL Floating Subtract Long

I 151 A I X Y
U 89 I2 1314 I7 I8 3s

Floating subtract the contents of location E from AC14. If the double length
fraction in the difference is zero, clear AC,AC+l. Otherwise normalize the
double length difference bringing OS into bit positions vacated at the right,
test for exponent overflow or underflow as described above, and place the
high order word of the result in AC. If the exponent of the difference is <
-101 (-128 + 27) or the low order half of the fraction is zero, clear AC+l.

l3 The caution given in footnote 10 for FAD applies to this instruction as well.

l4 The caution given in footnote 11 for FSB applies to this instruction as well.

Z-30 User Operations

-

Otherwise place a low order word for a double length result in AC+1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits l-8, and the low order part of the fraction in bits
9-35.

FMPL Floating Multiply Long

I 161 A / x Y

0 89 I2 1314 17 18 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear AC,AC+l. Otherwise normalize the
double length product bringing OS into bit positions vacated at the right,
test for exponent overflow or underflow as described above, and place the
high order word of the result in AC. If the exponent of the product is > 154
(127 + 27) or < -101 (-128 + 27) or the low order half of the fraction is zero,
clear AC+l. Otherwise place a low order word for a double length result in
AC+1 by putting a 0 in bit 0, an exponent in positive form 27 less than the
exponent of the product in bits l-8, and the low order part of the fraction in
bits 9-35.

FDVL Floating Divide Long

171 A / x Y

0 I39 I2 1314 17 I8 3s

If the magnitude of the software format double length fraction in AC,AC+l
is greater than or equal to twice the magnitude of the fraction in location E,
set Trap 1, Overflow, Floating Overflow and No Divide, and go immediately
to the next instruction without affecting the original AC or memory oper-
and in any way.

If the division can be performed, floating divide the software format
operand in AC,AC+l by the contents of location E. Calculate a quotient
fraction of 27 bits. If the fraction is zero, clear AC. A quotient with a
nonzero fraction will already be normalized if the original operands were
normalized; if it is not, normalize it bringing OS into bit positions vacated at
the right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in AC.

Calculate the exponent for the fractional remainder from the division
according to the relative magnitudes of the fractions in dividend and divi-
sor: if the dividend was greater than or equal to the divisor, the exponent of
the remainder is 26 less than that of the dividend, otherwise it is 27 less. If
the remainder exponent is < -128 or the fraction is zero, clear AC+l. Oth-
erwise place the floating point remainder (exponent and fraction) with the
sign of the dividend in AC+l.

User Operations 2-31

NOTE

In the KLlO, a negative quotient is represented by a twos
complement only when the remainder is zero - otherwise it
is a ones complement. In the KIlO and KAlO, a twos comple-
ment is used for a negative quotient regardless of the value of
the remainder.

Notes. Division fails if the divisor is zero, but the no-divide condition
can otherwise be satisfied only if at least one operand is unnormalized.

A nonzero unnormalized dividend whose entire high order fraction is
zero produces a zero quotient. In this case AC+1 is cleared in the KIlO but
may receive rubbish in other processors.

2.4 Boolean Functions

For logical operations the PDP-10 has instructions for shifting and rotat-
ing ($2.5) as well as for performing the complete set of sixteen Boolean
functions of two variables (including those in which the result depends on
only one or neither variable). The Boolean functions operate bitwise on full
words, so each instruction actually performs thirty-six logical operations
simultaneously. Thus in the AND function of two words, each bit of the
result is the AND of the corresponding bits of the operands. The table at the
end of the section lists the bit configurations that result from the various
operand configurations for all instructions.

Each Boolean instruction has four modes that determine the source of
the non-AC operand, if any, and the destination of the result. For an in-
struction without an operand (one that merely clears a location or sets it to
all 1s) the modes differ only in the destination of the result, so basic and
immediate modes are equivalent. The same is true also of an instruction
that uses only an AC operand. When specified by the mode, the result goes
to the accumulator addressed by A, even when there is no AC operand.

Source of non- Destination
Mode Suffix AC operand of result

Basic E AC
Immediate I The word O,E* AC
Memory M E E
Both B E AC and E

* In section 0 the immediate source is 0,E in all cases. But in a nonzero
section, setting AC to immediate memory instead uses the entire ex-
tended effective address E as the source, including the section number
(the left part of E).

SETZ Set to Zeros

400 111 A I X Y
0 61 89 I2 13 14 17 18 35

-

Change the contents of the destination specified by M to all OS.

2-32 User Operations

SETZ Set to Zeros 400

SETZI Set to Zeros Immediate 401

SETZM Set to Zeros Memory 402

SETZB Set to Zeros Both 403

Notes. SETZ and SETZI are equivalent (both merely clear AC). In
them, I, X and Y are reserved and should be zero (at present E is ignored).

SET0 Set to Ones

474 ,I! A I X 1
0 hl 8’) 12 13 14 17 IX 3s

Change the contents of the destination specified by M to all 1s.

SET0 Set to Ones 474

SET01 Set to Ones Immediate 475

SETOM Set to Ones Memory 476

SETOB Set to Ones Both 477

Notes. SET0 and SET01 are equivalent. In them, 1, X and Y are re-
served and should be zero (at present E is ignored).

SETA Set to AC

424 izl A / X Y 1
0 67 84 12 13 14 17 18 3s

Make the contents of the destination specified by M equal to AC.

SETA Set to AC 424

SETAI Set to AC Immediate 425

SETAM Set to AC Memory 426

SETAB Set to AC Both 427

Notes. SETA and SETAI are no-ops. In them, I, X and Y are reserved
and should be zero (at present E is ignored).

SETAM and SETAB are both equivalent to MOVEM, which is the
preferred instruction (all move AC to location E).

SETCA Set to Complement of AC

450 :I/ /l I x Y

0 0 7 x Y I2 I.1 I4 17 I8 3s

Change the contents of the destination specified by M to the complement of
AC.

User Operations 2-33

SETCA Set to Complement of AC 450

SETCAI Set to Complement of AC immediate 451

SETCAM Set to Complement of AC Memory 452

SETCAB Set to Complement of AC Both 453

Notes. SETCA and SETCAI are equivalent (both complement AC). In
them, I, X and Y are reserved and should be zero (at present E is ignored).

SETM Set to Memory

414 II1 A I x Y
0 67 XY I2 13 14 17 18 3s

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414

SETMI Set to Memory Immediate 415

SETMM Set to Memory Memory 416

SETMB Set to Memory Both 417

If the program is running in a nonzero section, the instruction SETMI
is called XMOVEI (§2.1>, which performs an analogous function with an
extended immediate operand (effective address).

Notes. SETM is equivalent to MOVE. In section 0 SETMI moves the
word 0,E to AC and is thus equivalent to MOVEI. SETMM is a no-op that
writes in memory. With nonzero A, SETMB is equivalent to MOVES. In all
cases the move instruction is preferred.

SETCM Set to Complement of Memory

4 6 0 /ll n I x Y
0 67 89 12 I3 I4 I7 In 3s

Change the contents of the destination specified by M to the complement of
the specified operand.

SETCM Set to Complement of Memory 460

SETCMI Set to Complement of Memory Immediate 461

SETCMM Set to Complement of Memory Memory 462

SETCMB Set to Complement of Memory Both 463

Notes. SETCMI moves the complement of the word O,E to AC.
SETCMM complements location 23.

-

-

--

--

2-34 User Operations

AND And with AC

404 ‘11 ,l I .\. Y

0 6 7 x 4 I2 I.1 I4 17 IX 35

Change the contents of the destination specified by M to the AND function
of the specified operand and AC.

AND And 404

ANDI And Immediate 405

ANDM And to Memory 406

ANDB And to Both 407

ANDCA And with Complement of AC

1 410 /iI A I x Y I
0 67 89 I2 I3 I4 I7 IX 35

Change the contents of the destination specified by M to the AND function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410

ANDCAI And with Complement of AC Immediate 411

ANDCAM And with Complement of AC to Memory 412

ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

I 430 hf A I X Y

0 h-l 89 I2 13 I4 17 18 3s

Change the contents of the destination specified by M to the AND function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory 420

ANDCMI And Complement of Memory Immediate 421

ANDCMM And Complement of Memory to Memory 422

ANDCMB And Complement of Memory to Both 423

ANDCB And Complements of Both

440 Al A I X Y I
0 67 89 I2 13 14 I7 18 35

Change the contents of the destination specified by M to the AND function

User Operations !2-35

of the complements of both the specified operand and AC. The result is the
NOR function of the operands.

ANDCB And Complements of Both 440

ANDCBI And Complements of Both Immediate 441

ANDCBM And Complements of Both to Memory 442

ANDCBB And Complements of Both to Both 443

IOR Inclusive Or with AC

434 M A I X Y
0 67 89 12 13 14 17 18 3s

Change the contents of the destination specified by M to the inclusive OR
function of the specified operand and AC.

IOR Inclusive Or 434

IORI Inclusive Or Immediate 435

IORM Inclusive Or to Memory 436

IORB Inclusive Or to Both 437

Notes. MACRO also recognizes OR, ORI, ORM and ORB as equivalent
to the inclusive OR mnemonics.

ORCA Inclusive Or with Complement of AC

454 M A I X Y
0 67 89 12 13 14 17 18 3s

Change the contents of the destination specified by M to the inclusive OR
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454

ORCAI Or with Complement of AC Immediate 455

ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

ORCM Inclusive Or Complement of Memory with AC

464 M A I X Y
0 67 89 12 13 14 17 18 3s

Change the contents of the destination specified by M to the inclusive OR
function of the complement of the specified operand and AC.

2-36 User Operations

ORCM Or Complement of Memory 464

ORCMI Or Complement of Memory Immediate 465

ORCMM Or Complement of Memory to Memory 466

ORCMB Or Complement of Memory to Both 467

ORCB Inclusive Or Complements of Both

I 470 IM A I X Y
0 67 89 12 13 14 17 18 35

Change the contents of the destination specified by M to the inclusive OR
function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB Or Complements of Both 470

ORCBI Or Complements of Both Immediate 471

ORCBM Or Complements of Both to Memory 472

ORCBB Or Complements of Both to Both 473

XOR Exclusive Or with AC

430 Ill A /I X Y
0 67 89 I2 13 14 17 18 35

Change the contents of the destination specified by M to the exclusive OR
function of the specified operand and AC.

XOR Exclusive Or 430

XORI Exclusive Or Immediate 431

XORM Exclusive Or to Memory 432

XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, i.e. by taking the exclusive OR of the remaining operand and the
result.

EQV Equivalence with AC

444 M A I X Y J
0 67 89 12 13 14 17 I8 35

Change the contents of the destination specified by M to the complement of
the exclusive OR function of the specified operand and AC (the result has
1s wherever the corresponding bits of the operands are the same).

User Operations 2-37

EQV Equivalence 444

EQVI Equivalence Immediate 445

EQVM Equivalence to Memory 446

EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, i.e. by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3-6 of the instruction word.

AC 0 1 0 1
Mode Specified Operand 0 0 1 1

SETZ

AND

ANDCA

SETM

ANDCM

SETA

XOR

IOR

ANDCB

EQV
SETCA

ORCA

SETCM

ORCM

ORCB

SET0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2.5 Shift and Rotate

These instructions shift or rotate right or left the contents of AC or the
contents of AC,AC + 1 concatenated into a 72-bit register with AC on the
left. Shifting is the movement of information bit-to-bit in a register. A
logical shift involves the entire word or doubleword with no distinction
among its bits, whereas an arithmetic shift involves only the magnitude,
bypassing the sign. Figure 2.1 shows the movement of information these

-

-

2-38 User Operations

instructions produce in the accumulators. A logical shift moves the bits
with OS brought in at the end being vacated; information shifted out at the
other end is lost. Rotation is a cyclic logical shift where information shifted
out at one end is put back in at the other. An arithmetic shift does not
affect the sign, but in a double length number, where it operates on the 70-
bit string made up of the magnitude parts of the two words, it makes bit 0
of the low order word equal to the sign. Null bits are brought in at the end
being vacated: a left shift brings in OS at the right, whereas a right shift
brings in the equivalent of the sign bit at the left. In either case, informa-
tion shifted out at the other end is lost. A single shift left is equivalent to
multiplying the number by 2 (provided no bit of significance is shifted out);
a shift right divides the number by 2, with truncation (see footnote 15).

Figure 2.1: Accumulator Bit Flow in Shift and Rotate Instructions

LSH

0 35

LSHC AC AC+ 1

0 35 0 35

ROT

ROTC

I
i._..__-_____~__ .__ ._J L- ._ __.___ _ ___I
0 35 0 35

I

ASH

ASHC 0 0

User Operations 2-39

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement nota-
tion) modulo 2’ in magnitude. In other words the effective shift E is the
number composed of bit 18 (which is the sign) and bits 28-35 of the calcula-
tion result. Hence the programmer may specify the shift directly in the
instruction (perhaps indexed) or give an indirect address to be used in
calculating the shift. A positive E produces motion to the left, a negative E
to the right. E is thus the power of 2 by which the number is multiplied.

LSH Logical Shift

242 A / X Y
0 89 I2 I.3 14 17 18 .35

Shift AC the number of places specified by E. If E is positive, shift left
bringing OS into bit 35; data shifted out of hit 0 is lost. If E is negative, shift
right bringing OS into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined

2 4 0 ‘4 I X Y J
0 8 Y I2 I3 I4 17 I8 3 5

Shift AC,AC + 1 the number of places specified by E. If E is positive, shift
left bringing OS into bit 71 (bit 35 of AC + 1); bit 36 is shifted into bit 35;
data shifted out of bit 0 is lost. If E is negative, shift right bringing OS into
bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate

I 14 1 n / x Y
0 8Y I2 I.3 I4 I7 IX .3 s

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

ROTC Rotate Combined

145 A I X Y
0 XY I2 I.3 14 I7 In .3s

Rotate AC,AC + 1 the number of places specified by E. If E is positive,

-

-_

2-40 User Operations

rotate left; bit 0 is rotated into bit 71 (bit 35 of AC + 1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

ASH Arithmetic Shift

I 240 A I X Y
0 89 I2 I.3 14 17 IX 3 s

Shift AC arithmetically the number of places specified by E. Do not shift bit
0. If E is positive, shift left bringing OS into bit 35; data shifted out of bit 1
is lost; set Trap 1 and Overflow if any bit of significance is lost (a 1 in a
positive number, a 0 in a negative one). If E is negative, shift right bringing
OS into bit 1 if AC is positive, 1s if negative; data shifted out of bit 35 is
1ost.i5

ASHC Arithmetic Shift Combined

244 A I x Y 1
0 RY I2 I.1 I4 17 IX .3 5

Shift AC,AC + 1 arithmetically the number of places specified by E. Do not
shift bit 0 of AC or AC + 1, but make bit 0 of AC + 1 equal to AC bit 0 if at
least one shift occurs (i.e. if E is nonzero). If E is positive, shift left bringing
OS into bit 71 (bit 35 of AC + 1); bit 37 (bit 1 of AC + 1) is shifted into bit 35;
data shifted out of bit 1 is lost; set Trap 1 and Overflow if any bit of
significance is lost (a 1 in a positive number, a 0 in a negative one). If E is
negative, shift right bringing OS into bit 1 if AC is positive, 1s if negative;
bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.15

Notes. The effect of a shift on bit 0 of the low order word is consistent
with the convention used for double length fixed point numbers. When
there is no shift however, the result may be inconsistent with that conven-
tion.

2.6 Arithmetic Testing

These instructions may jump or skip depending on the result of an arithme-
tic test and may first perform an arithmetic operation on the test word. Two
of the instructions have no modes.

I5 An arithmetic right shift truncates a negative result differently from IDIV if 1s are
shifted out. The result of the shift is more negative by one than the quotient of IDIV.
Hence shifting -1 (all Is) gives -1 as a result.

To obtain the same quotient that IDIV would give with a dividend in A divided by N
= 9, use

SKIPGE A
ADD1 A,N-I
ASH A.-K

User Operations 2-41

AOBJP Add One to Both Halves of AC and Jump if Positive

I 252 A / x Y 1
0 89 12 13 14 17 IX 35

Add one to each half of AC’” and place the result back in AC. If the result is
greater than or equal to zero (i.e. if bit 0 is 0, and hence a negative count in
the left half has reached zero or a positive count has not yet reached 217),
take the next instruction from location E and continue sequential operation
from there.

AOBJN Add One to Both Halves of AC and Jump if Negative

353 A 1 X Y I
0 89 I2 I3 14 17 18 3s

Add one to each half of AC’” and place the result back in AC. If the result is
less than zero (i.e. if bit 0 is 1, and hence a negative count in the left half
has not yet reached zero or a positive count has reached 217), take the next
instruction from location E and continue sequential operation from there.

These two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI XR,-N
MOVE1 AC,3
ADDM AC,TAB(XR)
AOBJN XR, .-1

;Put -N in XR left (clear XR right)
;Put 3 in AC
;Add 3 to entry
;Update XR and go back unless all
;entries accounted for

Note that even with extended addressing, AOBJN and AOBJP can be used
for this sort of local indexing, as the left half being negative or zero satisfies
the criterion for a local index.

The eight remaining instructions jump or skip if the operand or
operands satisfy a test condition specified by the mode.

Mode Suffix

Never

Less L

Equal E

Less or Equal LE

Always A

Greater or Equal GE

Not Equal N

Greater G

l6 In the KAlO, incrementing both halves of AC together is effected by adding 1000001,. A
count of -2 in AC left is therefore increased to zero if 2” - 1 is incremented in AC right.

--

2-42 User Operations

CAI Compare AC immediate and Skip if Condition Satisfied

I 30 .\I :l / x Y
0 56 HY I2 I.1 I4 17 IX -

I
3s

Compare AC with E (i.e. with the word O,E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

CAI

GAIL

CAIE

CAILE

CAIA

CAIGE

CAIN Compare AC immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than E 307

Compare AC Immediate but Do Not Skip

Compare AC immediate and Skip if AC less than E

Compare AC Immediate and Skip if Equal

Compare AC immediate and Skip if AC less than or
Equal to E

Compare AC Immediate but Always Skip

Compare AC Immediate and Skip if AC Greater than or
Equal to E

300

301

302

303

304

305

Notes. CA1 is a no-op in which I, X and Y are available for software
use.

CAM Compare AC with Memory and Skip if Condition Satisfied

I 31 Y
-zIrII

0 56 89 I2 1.3 14 I7 IX 3 s

Compare AC with the contents of location E and skip the next instruction
in sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM

CAML

CAME

CAMLE

CAMA

CAMGE

CAMN

CAMG

Compare AC with Memory but Do Not Skip

Compare AC with Memory and Skip if AC Less

Compare AC with Memory and Skip if Equal

Compare AC with Memory and Skip if AC Less or Equal

Compare AC with Memory but Always Skip

Compare AC with Memory and Skip if AC Greater
or Equal

Compare AC with Memory and Skip if Not Equal

Compare AC with Memory and Skip if AC Greater

310

311

312

313

314

315

316

317

Notes. CAM is a no-op that references memory.

User Operations 2-43

JUMP Jump if AC Condition Satisfied

32 M A/X Y
0 56 89 I2 13 14 17 I8 35

Compare AC (fixed or floating) with zero, and if the condition specified by
M is satisfied, take the next instruction from location E and continue se-
quential operation from there.

JUMP

JUMPL

JUMPE

JUMPLE

JUMPA

JUMPGE

JUMPN

JUMPG

Do Not Jump

Jump if AC Less than Zero

Jump if AC Equal to Zero

Jump if AC Less than or Equal to Zero

Jump Always

Jump if AC Greater than or Equal to Zero

Jump if AC Not Equal to Zero

Jump if AC Greater than Zero

320

321

322

323

324

325

326

327

Notes. JUMP is a no-op (instruction code 320 has this mnemonic for
symmetry). In it, I, X and Y are available for software use.

As an unconditional transfer, JRST is preferred to JUMPA.

SKIP Skip if Memory Condition Satisfied

I 33 it1 A I x Y I
0 56 89 I2 I3 I4 I7 IX 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satisfied.
If A is nonzero also place the contents of location E in AC.

SKIP

SKIPL

SKIPE

SKIPLE

SKIPA

SKIPGE

SKIPN

SKIPG

Do Not Skip

Skip if Memory Less than Z ?ro

Skip if Memory Equal to Zer >

Skip if Memory Less than or Equal to Zero

Skip Always

Skip if Memory Greater than x- Equal to Zero

Skip if Memory Not Equal to ‘ero

Skip if Memory Greater than i ero

330

331

332

333

334

335

336

337

Notes. If A is zero, SKIP is a no-op; ot rerwise it is equivalent to MOVE.
(Instruction code 330 has mnemonic SKI ’ for symmetry.) SKIPA is a con-
venient way to load an accumulator an I skip over an instruction upon
entering a loop.

-

‘V

-

-

-

2-44 User Operations

AOJ Add One to AC and Jump if Condition Satisfied

34 M AIX Y I
0 56 89 12 13 14 17 I8 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by it4 is satisfied, take the next
instruction from location E and continue sequential operation from there. If
AC originally contained 235 - 1, set Trap 1, Overflow and Carry 1; if -1, set
Carry 0 and Carry 1.

AOJ

AOJL

AOJE

AOJLE

AOJA

AOJGE

AOJN

AOJG

Add One to AC but Do Not Jump 340

Add One to AC and Jump if Less than Zero 341

Add One to AC and Jump if Equal to Zero 342

Add One to AC and Jump if Less than or Equal to Zero 343

Add One to AC and Jump Always 344

Add One to AC and Jump if Greater than or Equal to Zero 345

Add One to AC and Jump if Not Equal to Zero 346

Add One to AC and Jump if Greater than Zero 347

AOS Add One to Memory and Skip if Condition Satisfied

35 izl A I X 1 Y 1
0 56 8’) I2 I.3 14 17 I8 3s

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 - 1, set Trap 1, Overflow and Carry 1; if -1, set Carry 0 and Carry 1. If
A is nonzero also place the result in AC.

AOS

AOSL

AOSE

AOSLE

AOSA

AOSGE

AOSN Add One to Memory and Skip if Not Equal to Zero 356

AOSG Add One to Memory and Skip if Greater than Zero 357

Add One to Memory but Do Not Skip

Add One to Memory and Skip if Less than Zero

Add One to Memory and Skip if Equal to Zero

Add One to Memory and Skip if Less than or
Equal to Zero

Add One to Memory and Skip Always

Add One to Memory and Skip if Greater than or

Equal to Zero

350

351

352

353

354

355

User Operations 2-45

SOJ Subtract One from AC and Jump if Condition Satisfied

3 6 izl A I X Y I
0 56 89 I2 I3 14 17 IX 3s

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next
instruction from location E and continue sequential operation from there. If
AC originally contained -235, set Trap 1, Overflow and Carry 0; if any other
nonzero number, set Carry 0 and Carry 1.

SOJ

SOJL

SOJE

SOJLE

SOJA

SOJGE

SOJN Subtract One from AC and Jump if Not Equal to Zero 366

SOJG Subtract One from AC and Jump if Greater than Zero 367

Subtract One from AC but Do Not Jump

Subtract One from AC and Jump if Less than Zero

Subtract One from AC and Jump if Equal to Zero

Subtract One from AC and Jump if Less than or
Equal to Zero

Subtract One from AC and Jump Always

Subtract One from AC and Jump if Greater than
or Equal to Zero

360

361

362

363

364

365

SOS Subtract One from Memory and Skip if Condition Satisfied

-

-

37 Al A I x Y 1
0 56 XY 12 13 14 17 IX 3s

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
-235, set Trap 1, Overflow and Carry 0; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC.

SOS
SOSL

SOSE

SOSLE

SOSA

SOSGE

SOSN Subtract One from Memory and Skip if Not Equal to Zero 376

SOSG Subtract One from Memory and Skip if Greater than Zero 377

Subtract One from Memory but Do Not Skip

Subtract One from Memory and Skip if Less than Zero

Subtract One from Memory and Skip if Equal to Zero

Subtract One from Memory and Skip if Less than
or Equal to Zero

Subtract One from Memory and Skip Always

Subtract One from Memory and Skip if Greater
than or Equal to Zero

370

371

372

373

374

375

--

2-46 User Operations

Some of these instructions are useful for determining the relative val-
ues of fixed and floating point numbers; others are convenient for control-
ling iterative processes by counting. AOSE is especially useful in an inter-
lock procedure in a multiprogramming environment. Suppose memory con-
tains a routine that must be available to two processes but cannot be used
by both at once. When one process finishes the routine it sets location
LOCK to -1. Either process can then test the interlock and make it busy
with no possibility of letting the other one in, as AOSE cannot be inter-
rupted once it starts to modify the addressed location.

AOSE LOCK
JRST -1

Skip to interlocked code only if
;LOCK is zero after addition
;Interlocked code starts here

SETOM LOCK ;Unlock

Since it takes a long time to count to 236, it is alright to keep testing the
lock.

2.7 Logical Testing and Modification

These eight instructions use a mask to modify and/or
AC. The bits are those that correspond to 1s in the

test selected bits in
mask and they are

referred to as the “masked bits.” The programmer chooses the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second
letter selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked by the
word O,E)

Left L AC left is masked by E (AC is masked by the
word E,O)

Direct

Swapped

D

S

AC is masked by the contents of location E

AC is masked by the contents of location E with
left and right halves interchanged

The third letter determines the way in which those bits selected by the
mask are modified.

Modification Letter Effect on AC

No

Zeros

Complement

Ones

None

Places OS in all masked bit positions

Complements all masked bits

Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-
ifies the condition the masked bits must satisfy to produce a skip.

User Operations 2-47

Mode SUffiX Effect

Never

Equal

Always

Not Equal

E

A

N

Never skip

Skip if all masked bits equal 0

Always Skip

Skip if not all masked bits equal 0 (at least one
bit is 1)

These mode names are consistent with those for arithmetic testing and
derive from the test method, which ands AC with the mask and tests
whether the result is equal to zero or is not equal to zero. The programmer
may find it convenient to think of the modes as Every and Not Every: every
masked bit is 0 or not every masked bit is 0. If the mnemonic has no suffix
there is never any skip, and the instruction is a no-op if there is also no
modification; an A suffix produces an unconditional skip - the skip always
occurs regardless of the state of the masked bits. Note that the skip condi-
tion must be satisfied by the state of the masked bits prior to any modifica-
tion called for by the instruction.

TRN Test Right, No Modification, and Skip if Condition Satisfied

h 0 Ill 0 A / x Y 1
0 Sh 78’) I2 I.3 14 17 IX 3 5

If the bits in AC right corresponding to Is in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. AC is unaffected.

TRN

TRNE

TRNA

TRNN

Test Right, No Modification, but Do Not Skip

Test Right, No Modification, and Skip if All P,Jasked Bits
Equal 0

Test Right, No Modification, but Always Skip

Test Right, No Modification, and Skip if Not All Masked
Bits Equal 0

600

602

604

606

Notes. TRN is a no-op in which I, X and Y are reserved and should be
zero (at present E is ignored).

TRZ Test Right, Zeros, and Skip if Condition Satisfied

i 0 2 .I/ 0 :l I ,\ 1 I

0 5 h 7 H ‘, I2 I.3 I4 I7 IX .15

If the bits in AC right corresponding to 1s in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. Change the masked AC
bits to OS; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE Test Right, Zeros, and Skip if All Masked Bits Equaled 0 622

-

U’

-

2-48 User Operations

TRZA

TRZN

Test Right, Zeros, but Always Skip

Test Right, Zeros, and Skip if Not All Masked Bits
Equaled 0

624

626

TRC Test Right, Complement, and Skip if Condition Satisfied

L 6 4 MO A I x Y 1
0 56 789 I2 13 14 17 IX 35

If the bits in AC right corresponding to 1s in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. Complement the masked
AC bits: the rest of AC is unaffected.

TRC

TRCE

TRCA

TRCN

Test Right, Complement, but Do Not Skip

Test Right, Complement, and Skip if All Masked Bits
Equaled 0

Test Right, Complement, but Always Skip

Test Right, Complement, and Skip if Not All Masked Bits
Equaled 0

640

642

644

646

TRO Test Right, Ones, and Skip if Condition Satisfied

I 6 6 M 0 /I / ,‘i’
~,-~ ~_.~_ ~ ~!

0 56 7XY I2 I.3 I4 I7 IX .I 5

If the bits in AC right corresponding to Is in E satisfy the condition speci-
fied by M, skip the next instruction in sequence. Change the masked AC
bits to Is; the rest of AC is unaffected.

TRO

TROE

TROA’

TRON

Test Right, Ones, but Do Not Skip

Test Right, Ones, and Skip if All Masked Bits
Equaled 0

Test Right, Ones, but Always Skip

Test Right, Ones, and Skip if Not All Masked Bits
Equaled 0

660

662

664

666

TLN Test Left, No Modification, and Skip if Condition Satisfied

If the bits in AC left corresponding to Is in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN

TLNE

Test Left, No Modification, but Do Not Skip

Test Left, No Modification, and Skip if All Masked Bits
Equal 0

601

603

User Operations !2-49

TLNA

TLNN

Test Left, No Modification, but Always Skip

Test Left, No Modification, and Skip if Not All Masked
Bits Equal 0

605

607

Notes. TLN is a no-op in which I, X and Y are reserved and should be
zero (at present E is ignored).

TLZ Test Left, Zeros and Skip if Condition Satisfied

63 Ml R I x Y
I

0 56 7 89 12 13 14 17 18 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
OS; the rest of AC is unaffected.

TLZ

TLZE

TLZA

TLZN

Test Left, Zeros, but Do Not Skip

Test Left, Zeros, and Skip if All Masked Bits
Equaled 0

Test Left, Zeros, but Always Skip

Test Left, Zeros, and Skip if Not All Masked Bits
Equaled 0

621

623

625

627

-

-

TLC Test Left, Complement, and Skip if Condition Satisfied
-

64 Ml A I x Y 1
0 56 789 12 13 14 17 18 3s

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits: the rest of AC is unaffected.

TLC

TLCE

TLCA

TLCN

Test Left, Complement, but Do Not Skip

Test Left, Complement, and Skip if All Masked Bits
Equaled 0

Test Left, Complement, but Always Skip

Test Left, Complement, and Skip if Not All Masked Bits
Equaled 0

641

643

645

647

TLO Test Left, Ones, and Skip if Condition Satisfied

66 Ml A I x Y
0 56 7 89 12 13 14 17 18 3s

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
1s; the rest of AC is unaffected.

Z-50 User Operations

TLO

TLOE

TLOA

TLON

Test Left, Ones, but Do Not Skip

Test Left, Ones, and Skip if All Masked
Bits Equaled 0

Test Left, Ones, but Always Skip

Test Left, Ones, and Skip if Not All Masked
Bits Equaled 0

661

663

665

667

TDN Test Direct, No Modification, and Skip if Condition Satisfied

h I 111 0 /I I x Y

0 56 78’) I2 I.1 14 17 IX 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is unaf-
fected.

TD,N

TDNE

Test Direct, No Modification, but Do Not Skip

Test Direct, No Modification, and Skip if All
Masked Bits Equal 0

Test Direct, No Modification, but Always Skip

Test Direct, No Modification, and Skip if Not All
Masked Bits Equal 0

610

612

TDNA

TDWN

Notes. r

614

616

I’DN is a no-op that references memory.

TDZ Test Direct, Zeros, and Skip if Condition Satisfied

6 3 1110 A f x Y 1
0 56 7 XY I2 I3 I3 I7 IX 35

If the bits in AC corresponding to Is in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to OS; the rest of AC is unaffected.

TDZ

TDZE

TDZA

TDZN

Test Direct, Zeros, but Do Not Skip

Test Direct, Zeros, and Skip if All Masked
Bits Equaled 0

Test Direct, Zeros, but Always Skip

Test Direct, Zeros, and Skip if Not All Masked
Bits Equaled 0

630

632

634

636

User Operations 2-51

TDC Test Direct, Complement, and Skip if Condition Satisfied

65 MO A I X Y
0 56 IXY I2 13 14 17 18 3s

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Comple-
ment the masked AC bits; the rest of AC is unaffected.

-

TDC

TDCE

TDCA

TDCN

Test Direct, Complement, but Do Not Skip

Test Direct, Complment, and Skip if All Masked
Bits Equaled 0

Test Direct, Complement, but Always Skip

Test Direct, Complement, and Skip if Not All
Masked Bits Equaled 0

650

652

654

656

-

TDO Test Direct, Ones, and Skip if Condition Satisfied

6 7 Ill 0 11 I x Y I
0 56 7 89 12 13 I4 17 IX 3 5

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
masked AC bits to 1s; the rest of AC is unaffected.

-

TDO

TDOE

TDOA

TDON

Test Direct, Ones, but Do Not Skip

Test Direct, Ones, and Skip if All Masked
Bits Equaled 0

Test Direct, Ones, but Always Skip

Test Direct, Ones, and Skip if Not All
Masked Bits Equaled 0

670

672

674

676

TSN Test Swapped, No Modification, and Skip if Condition Satisfied

61 hll A I X Y 1
0 5h 7 89 I2 13 14 17 18 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN

TSNE

Test Swapped, No Modification, but Do Not Skip

Test Swapped, No Modification, and Skip if All
Masked Bits Equal 0

611

613

2-52 User Operations

TSNA

TSNN

Test Swapped, No Modification, but Always Skip

Test Swapped, No Modification, and Skip if
Not All Masked Bits Equal 0

Notes. TSN is a no-op that references memory.

615

617

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied

63 Ml A I x Y I
0 56 7 89 I2 1.3 14 17 18 3s

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to OS; the rest of
AC is unaffected.

TSZ

TSZE

TSZA

TSZN

Test Swapped, Zeros, but Do Not Skip

Test Swapped, Zeros, and Skip if All Masked
Bits Equaled 0

Test Swapped, Zeros, but Always Skip

Test Swapped, Zeros, and Skip if Not All
Masked Bits Equaled 0

631

633

635

637

TSC Test Swapped, Complement, and Skip if Condition Satisfied

(, 5 ,\I I /I 1 x 1

0 Sh 7 x9 I2 I.3 IJ I7 IX .I?

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC

TSCE

TSCA

TSCN

Test Swapped, Complement, but Do Not Skip

Test Swapped, Complement, and Skip if All
Masked Bits Equaled 0

Test Swapped, Complement, but Always Skip

Test Swapped, Complement, and Skip if Not
All Masked Bits Equaled 0

651

653

655

657

User Operations 2-53

TSO Test Swapped, Ones, and Skip if Condition Satisfied

6 7 /II 1 A I x __-21 0 Sh 7 8’) I2 I.1 I4 17 I8 35

-

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to 1s; the rest of
AC is unaffected.

TSO

TSOE

TSOA

TSON

Test Swapped, Ones, but Do Not Skip

Test Swapped, Ones, and Skip if All Masked
Bits Equaled 0

Test Swapped, Ones, but Always Skip

Test Swapped, Ones, and Skip if Not All Masked
Bits Equaled 0

671

673

675

677

With these instructions any bit throughout all of memory can be used
as a program flag, although an ordinary memory location containing flags
must be moved to an accumulator for testing or modification. The usual
procedure, since locations 1-17 are addressable as index registers, is to use
AC 0 as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it
is generally most convenient to select bits by 1s right in the address part of
the instruction word. A given bit selected by a half word mask M is then set
by one of these:

TRO F,M TLO F,M

and tested and cleared by one of these:

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where
X is a binary number containing a single 1 in the same bit position as the
flag. This sequence determines whether flags X and Y in the right half of
accumulator F ,are both on:

TRC
TRCE
. . .
. . .

F,X+Y
F,X+Y

Complement flags X and Y
;Test both and restore states
;Do this if not both on
Skip to here if both on

-

2-54 User Operations

2.8 Half Word Data Transmission

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions, but in
a nonzero section the immediate mode of one of them acts in a special way,
and is treated as a separate instruction. The sixteen forms are distin-
guished by which half of the source word is moved to which half of the
destination, and by which of four possible operations is performed on the
other half of the destination. The basic mnemonics are three letters that
indicate the transfer,

HLL Left half of source to left half of destination

HRL Right half of source to left half of destination

HRR Right half of source to right half of destination

HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination

Do nothing

Zeros

Ones

Extend

Z

0

E

None

Places OS in all bits of the other half

Places 1s in all bits of the other half

Places the sign (the leftmost bit) of the half word
moved in all bits of the other half. This action extends
a right half word number into a full word number but
is valid arithmetically only for positive left half word
numbers - the right extension of a number requires
OS regardless of sign (hence the Zeros operation should
be used to extend a left half word number).

An additional letter may be appended to indicate the mode, which de-
termines the source and destination of the half word moved.

Mode

Basic
Immediate
Memory
Self

Suffix

I
M
S

Source

E
The word O,E*
AC
E

Destination

AC
AC
E
E, but full word
result also goes
to AC if A is
nonzero

* In section 0 the immediate source is 0,E in all cases, and selecting the left
half of the source merely clears the selected half of the destination. But
in a nonzero section the basic left-to-left transfer (XHLLI) instead uses
the entire extended effective address E as the source, and it thus trans-
fers the section number (the left part of E).

User Operations 2-55

HLL Half Word Left to Left

pool/ 1 .‘I 1 /I ,Y 1 z __ ____ ___
0 0 7 H Y 12 1.3 I4 17 IX 3s

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HLL

HLLI

HLLM

HLLS

Half Left to Left 500

Half Left to Left Immediate 501

Half Left to Left Memory 502

Half Left to Left Self 503

If the program is running in a nonzero section, the instruction HLLI is
called XHLLI (see below), which performs an analogous function with an
extended immediate operand (effective address).

Notes. In section 0 HLLI merely clears AC left. If A is zero, HLLS is a
no-op, otherwise it is equivalent to MOVE.

HLLZ Half Word Left to Left, Zeros

510 111 .‘l I x Y 1
0 h 7 x Y I2 IJ I4 I7 IH 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is
unaffected, the original contents of the destination are lost.

HLLZ

HLLZI

HLLZM

HLLZS

Half Left to Left, Zeros 510

Half Left to Left, Zeros, Immediate 511

Half Left to Left, Zeros, Memory 512

Half Left to Left, Zeros, Self 513

Notes. HLLZI merely clears AC. If A is zero, HLLZS merely clears the
right half of location E.

HLLO Half Word Left to Left, Ones

520 ,I1 /l -- I x Y

0 67 nu I2 I3 I4 I7 IX 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

-

-

2-56 User Operations

HLLO Half Left to Left, Ones 520

HLLOI Half Left to Left, Ones, Immediate 521

HLLOM Half Left to Left, Ones, Memory 522

HLLOS Half Left to Left, Ones, Self 523

Notes. HLLOI sets AC to all OS in the left half, all Is in the right.

HLLE Half Word Left to Left, Extend

530 izl A I X Y
0 67 89 12 13 14 17 18 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal
to bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLLE Half Left to Left, Extend

HLLEI Half Left to Left, Extend, Immediate

HLLEM Half Left to Left, Extend, Memory

HLLES Half Left to Left, Extend, Self

Notes. HLLEI is eq
G

ivalent to HLLZI (it merely clears AC).

530

531

532

533

HRL Half Word Right to Left

504 ill A I X Y
0 67 89 I2 13 14 17 18 3 5

Move the right half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504

HRLI Half Right to Left Immediate 505

HRLM Half Right to Left Memory 506

HRLS Half Right to Left Self 507

User Operations 2-57

HRLZ Half Word Right to Left, Zeros

514 ill A I x Y
0 61 89 I2 I.1 I4 17 IX 3s

-’

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is
unaffected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514

HRLZI Half Right to Left, Zeros, Immediate 515

HRLZM Half Right to Left, Zeros, Memory 516

HRLZS Half Right to Left, Zeros, Self 517

Notes. HRLZI loads the word E,O into AC and is thus equivalent to
MOVSI.

-

HRLO Half Word Right to Left, Ones

524 M A 1 X Y
0 67 89 12 13 14 17 18 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRLO

HRLOI

HRLOM

HRLOS

Half Right to Left, Ones 524

Half Right to Left, Ones, Immediate 525

Half Right to Left, Ones, Memory 526

Half Right to Left, Ones, Self 527

-

HRLE Half Word Right to Left, Extend

534 lII A 1 x Y
0 67 89 I2 I3 14 17 IX 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal
to bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE

HRLEI

HRLEM

HRLES

Half Right to Left, Extend 534

Half Right to Left, Extend, Immediate 535

Half Right to Left, Extend, Memory 536

Half Right to Left, Extend, Self 537

2-58 User Operations

HRR Half Word Right to Right

i 540 ,I/ A / x Y I
0 67 8’) 12 13 I4 17 IX 3 5

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaf-
fected; the original contents of the destination right half are lost.

HRR Half Right to Right 540

HRRI Half Right to Right Immediate 541

HRRM Half Right to Right Memory 542

HRRS Half Right to Right Self 543

Notes. If A is zero, HRRS is a no-op; otherwise it is equivalent to
MOVE.

HRRZ Half Word Right to Right, Zeros

550 111 .-1 I x Y

0 67 BY I2 I3 I4 I7 I8 35

Move the right half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550

HRRZI Half Right to Right, Zeros Immediate 551

HRRZM Half Right to Right, Zeros, Memory 552

HRRZS Half Right to Right, Zeros, Self 553

Notes. HRRZI loads the word 0,E into AC and is thus equivalent to
MOVE1 and SETMI. If A is zero, HRRZS merely clears the left half of
location E.

HRRO Half Word Right to Right, Ones

5 6 0 141 A I X Y I
0 67 8” I2 I3 I4 I7 IX 3s

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560

HRROI Half Right to Right, Ones, Immediate 561

HRROM Half Right to Right, Ones, Memory 562

HRROS Half Right to Right, Ones, Self 563

User Operations 2-59

HRRE Half Word Right to Right, Extend

570 !I1 ‘4 I x Y

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE Half Right to Right, Extend 570

HRREI Half Right to Right, Extend, Immediate 571

HRREM Half Right to Right, Extend, Memory 572

HRRES Half Right to Right, Extend, Self 573

HLR Half Word Left to Right

544 Al A I x Y
0 67 89 I2 I3 I4 I7 I8 3 5

Move the left half of the scrxce word specified by M to the right half of the
specified destination. The source and the destination left half are unaf-
fected; the original contents of the destination right half are lost.

HLR Half Left to Right 544

HLRI Half Left to Right Immediate 545

HLRM Half Left to Right Memory 546

HLRS Half Left to Right Self 547

Notes. HLRI merely clears AC right.

HLRZ Half Word Left to Right, Zeros

554 hl A I X Y 1
0 67 89 I2 I3 I4 I7 I8 3s

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554

HLRZI Half Left to Right, Zeros, Immediate 555

HLRZM Half Left to Right, Zeros, Memory 556

HLRZS Half Left to Right, Zeros, Self 557

Notes. HLRZI merely clears AC and is thus equivalent to HLLZI.

2-60 User Operations

HLRO Half Word Left to Right, Ones

564 ill A I X
0 b-l XL) I2 I3 14 17 IX

Y
35

Move the left half of the source specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source
is unaft”ected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564

HLROI Half Left to Right, Ones, Immediate 565

HLROM Half Left to Right, Ones, Memory 566

HLROS Half Left to Right, Ones, Self 567

Notes. HLROI sets AC to all 1s in the left half, all OS in the right.

HLRE Half Word Left to Right, Extend

574 h! A I X Y
0 67 09 I2 13 14 17 18 3s

Move the left half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE Half Left to Right, Extend 574

HLREI Half Left to Right, Extend, Immediate 575

HLREM Half Left to Right, Extend, Memory

HLRES Half Left to Right, Extend, Self

Notes. HLREI is equivalent to HLRZI (ii

576

577

merely clears AC).

The half word transmission instructions are very useful for handling
addresses, and they provide a convenient means of setting up an accumula-
tor whose right half is to be used for indexing while a control count is kept
in the left half. For example, this pair of instructions loads the l&bit num-
bers M and N into the left and right halves respectively of accumulator XR.

HRLZI XR,M
HRRI XR.N

It is not necessary to clear the other half of XR when loading the first half
word. But any memory instruction that modifies the other half is faster
than the corresponding instruction that does not, as the latter must fetch
the destination word in order to save half of it. (The difference does not
apply to self mode, for here the source and destination are the same.)

User Operations 2-61

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as B-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC
HLLI XR, Clear XR left

The following instruction uses a half word transfer for inserting the
section number that results from an effective address calculation into the
left half of an accumulator.

XHLLI Extended Half Word Left to Left

501 I A l/l x
0 89 I2 I3 14 17 18 3s

If the program is running in a nonzero section, clear AC bits O-5 and place
the section number (the left part) of the effective address E in AC bits 6-17.
If E is a local AC address, the section number is 1. AC right is unaffected;
the original contents of AC left are lost.

If the program is running in section 0, this instruction is called HLLI,
which performs an analogous function for section 0 (it moves a zero section
number).

Notes. The section number given for a local AC address is that of a
global AC address. Giving XHLLI with an address 20 or greater without
indexing or indirection places the current PC section number in AC left,
and it can thus be used to determine what section the program is in.

2.9 Program Control

A program control instruction is one that in some way affects the sequence
in which instructions in the program are performed. Most such instructions
are actually described in some other category, such as the arithmetic and
logical testing instructions above, or the yet-to-be discussed stack instruc-
tions, UUOs, string compare instructions, and the condition IO instructions
that test device flags. The present section treats the program flags, over-
flow trapping, and all program control instructions that do not belong to
some other class. Most of these are specifically for handling subroutines.
All but one are jumps, although the exception causes the processor to exe-
cute an instruction at an arbitrary location and may therefore be regarded
as a jump with an immediate and automatic return. All but two of the
jumps are unconditional; one exception tests several program flags, the
other tests an accumulator.

When an instruction makes the processor leave the normal program
sequence to jump to a subroutine or call the Monitor, it must save informa-
tion sufficient to allow a later return to the original program. Such instruc-
tions generally save the states of the program flags and the location at

--

-

2-62 User Operations

-

which the disruption in the normal sequence occurred. Saving the program
position is referred to as “saving PC,” although the quantity actually saved
may be the value currently contained in PC or an address one greater than
that, depending on the circumstances. For example, the same instruction
may be used to call a subroutine in a program or to call a service routine in
an interrupt. When a return is later made using the saved address in the
subroutine case, the instruction that saved PC should not be repeated -
the return should be made instead to the instruction following it in normal
sequence, i.e. the instruction at the address one greater than that originally
in PC. In the interrupt case, on the other hand, a subsequent return has
nothing to do with the instruction that saved PC - the return should be
made to the interrupted instruction, the one PC pointed at when the inter-
rupt occurred. Both cases are covered in the instruction descriptions by the
phrase “save PC,” and it is to be assumed that the address saved is the one
appropriate to the situation in which the instruction is given.

Sometimes regarded as program control, in a somewhat trivial sense,
are those instructions that do nothing. The most commonly used no-op is
JFCL, which is described here. Other no-ops are among the testing and
Boolean instructions discussed previously: SETA, SETAI, SETMM, CAI,
CAM, JUMP, TRN, TLN, TDN, TSN.17 Of these, SETA, SETAI, CAI,
JUMP, TRN and TLN are preferred because they do not use the calculated
effective address to reference memory.

The Execute Instruction

This instruction allows the programmer to execute the contents of any
memory location as an instruction without altering the normal program
counting sequence to do it.

XCT Execute

-7<--

If A is zero or the processor is in user mode or is a KAlO, execute the
contents of location E as an instruction. l8 Any instruction may be executed,
including another XCT. If an XCT executes a skip instruction, the skip is
relative to the location of the XCT (the first XCT if there are several in a
chain). If an XCT executes a jump, program flow is altered as specified by
the jump (no matter how many XCTs precede a jump instruction, when PC
is saved it contains an address one greater than the location of the first
XCT in the chain).

l7 KAlO instruction codes 247 and 257 are reserved for instructions installed specially for a
particular system. They execute as no-ops when run on a KAlO that contains no special
hardware for them, but for program compatibility it is advised that they not be used
regularly as no-ops.

l8 Caution: In a private program (concealed or kernel mode) on the KIlO, never give an XCT
that executes an instruction in a public page. It does not work.

User Operations 2-63

In executive mode this instruction performs as stated only when A is
zero.lg Nonzero A results in a so called “previous context XCT” or PXCT,
whose ramifications are far more widespread than indicated here. PXCT is
a very special instruction for the exclusive use of the Monitor, and it is
described in the section on memory management in the system operations
chapter for each processor.

Conditional Jumps

JFFO Jump if Find First One

243 A I X Y I
0 89 I2 13 14 17 IX 35

If AC contains zero, clear AC + 1 and go on to the next instruction in se-
quence .

If AC is not zero, count the number of leading OS in it (OS at the left of
the leftmost 11, and place the count in AC + 1. Take the next instruction
from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC + 1 are lost.
Notes. When AC is negative, the second accumulator is cleared, just as

it would be if AC were zero.

JFCL Jump on Flag and Clear

355 F I x Y I
0 84, I2 13 14 17 18 35

If any flag specified by F is set, clear it and take the next instruction from
location E, continuing sequential operation from there. Bits 9-12 are pro-
grammed as follows.

Bit Flag Selected by a 1

9 Overflow
10 Carry 0
11 Carry 1
12 Floating Overflow

To select one or a combination of these flags the programmer can spec-
ify the equivalent of an AC address that places 1s in the appropriate bits,
but MACRO recognizes mnemonics for some of the 13-bit instruction codes
(bits O-12).

lg The KAlO lacks previous-context capability. On that processor and in user mode on any
processor, A is ignored, but it is reserved and should be zero.

2-64 User Operations

JFCL JFCL 0,
JOV JFCL 10,
JCRYO JFCL 4,
JCRYl JFCL 2,
JCRY JFCL 6,

JFOV JFCL 1,

No-op 25500
Jump on Overflow 25540
Jump on Carry 0 25520
Jump on Car-y 1 25510
Jump on Carry 0 or 1 25530

Jump on Floating Overflow 25504

To left-normalize a positive integer in AC use

JFFO AC,. i- 1
LSH AC,-l(AC + 1)

The flags tested by JFCL are described in detail below. This instruction
can be used simply to clear the selected flags by having the jump address
point to the next consecutive location, as in

JFCL 17,. + 1

which clears all four flags without disrupting the normal program se-
quence. A JFCL that selects no flag is the preferred no-op as it neither
fetches nor stores an operand, and bits 13-35 of the instruction word can be
used to store information.

JFCL is the only jump that can test any of the flags. But it can test
only four of them, and it saves no information for a subsequent return from
a subroutine. Hence it serves as a branch point for entry into either one of
two main paths, which may or may not have a later point in common. For
example, it may test the carry flags simply to take appropriate action in a
multiple precision fixed point routine.

Program Flags

When an instruction saves the program flags, it loads their states into bits
O-12 of a word as shown here,

OVERFLOW
USFP

FLOATING
FIRST

#N-OUT
ADDRESS

PRE'vIOUS CARRY C CAR,?* I PART USER PREVIOUS PUBLIC FAILURE TRAP 2 TRAP 1 FLOATING
UNGfRFLOW

NO DIVIDE

CONTEXT
OVERFLOW OONE CONTEXT INHIBIT

PUBLlC USER

0 I 2 3 4 5 6 7 a 9 10 II 12

where the upper part of a double box indicates the flag saved in user mode,
and the lower part indicates that saved in KLlO and KIlO executive mode.
The flag listed in the lower part for bit 6 also applies to KS10 executive
mode, but since the KS10 has no public mode, bit 0 always receives the
state of the Overflow flag and bit 7 is not used. The KY10 also lacks a flag
for bit 8. (In KAlO executive mode bits 0 and 6 receive the Overflow state
and the (meaningless) User In-out state, and bits 7-10 are not used as their
flags do not exist.)

Where the flags are saved (in an accumulator or memory location) and
what other information is saved with them depends on the instruction and

User Operations 2-65

the circumstances of its execution But whenever the flags are saved, their
states are always stored in bits O-12 of a word in the configuration shown.
Some instructions when executed in section 0 save the flags and the in-
section part of PC in a so-called “PC word” like this.

[
FLAGS

I 00 1
IN-SECTION PC

1
0 I2 13 17 I8 3s

Note that nothing is stored in bits 13-17, so when the PC word is addressed
indirectly it can produce neither indexing nor further indirect addressing.
When such instructions are performed in a nonzero section, they generally
save only the extended PC without flags. Other instructions, executable
only in the KS10 and the extended KLlO, combine the flags and the full PC
in what is referred to as a “flag-PC doubleword” with this format,

r FLAGS 00 PROCESSOR-DEPENDENT INFORMATION

00 PC
0 56 12 13 17 18 35

where still other information may be saved in the rest of the flag word. In a
manner analogous to the PC word, nothing is ever stored in bits 13-17 of
the first word or bits O-5 of the second. Hence when the second word is
addressed indirectly, it is interpreted as global and can produce neither
indexing nor further indirect addressing. Note however that if it is used
from an index register, it is taken as global or local depending on whether
or not bits 6-17 are zero. Nothing is saved in the right half of the flag word.

Certain instructions can use bits O-12 of a word to set up the program
flags to restore them to their original states following an interruption or to
control specific situations. Restoration of course assumes the flags are
being restored from a word in which they were previously saved. When the
flags are saved, the flag bits reflect the states and flags appropriate to the
current situation. At a transition from one mode to another, the flags saved
are those of the mode the processor is leaving, and the flags restored are
those for the mode the processor is entering. For example, when the user
calls the Monitor, bit 5 of the flag word is set; and the User flag must be
cleared, either automatically or by a 0 in bit 5 of a restoring flag word.
Moreover Overflow and User In-out are saved, but the flag bits used for
restoration are adjusted to produce the correct states for the previous con-
text flags. No conflict can result concerning bit 6, as User In-out exists only
in user mode, and Previous Context User exists only in executive mode. On
the other hand, although only one flag is ever saved in bit 0, at restoration
bit 0 conditions the states of both Overflow and Previous Context Public (if
present). The latter is irrelevant in user mode, but the executive program-
mer must be aware that if he wishes to use Overflow or give a JFCL to test
it, its initial state is that assigned to Previous Context Public rather than
that resulting from any arithmetic operation. When a return is made to an
interrupted executive program via a flag-PC doubleword in an extended
processor, the previous context section for that program is also restored
from bits 24-35 of the flag word.

By manipulating the bits used to restore the flags, the programmer can
set them up in any desired way, except that the hardware contains inter-

-

-

User Operations June 1982

f

locks so that a user program cannot clear User or set User In-out, and no
public program can clear Public for itself. As an example, setting a trap
flag immediately causes a trap.

The following lists the meaning of the information contained in bits
O-12 of a flag word at the time the flags are saved. Bits 0 and 6 are given
only for user mode, as the special executive flags are relevant only to the
previous context XCT instruction and are left for the discussion of system
operations. Remember (42.2) that overflow is determined directly from the
carries, not the carry flags, which give useful information only if no more
than one instruction that can set them occurs between clearing and reading
them, The explanations assume the flags reflect normal circumstances -
not arbitrary rigging. An x in a mnemonic indicates any letter (or none)
that may appear in the given position to specify the mode, e.g. ADDx com-
prises ADD, ADDI, ADDM, ADDB.

Bit Meaning of a 1 in the Bit

0 Overflow - any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive
number or a 0 out in a negative number.

An MULx has multiplied -2”’ by itself (product 2”‘).

A DMUL has multiplied -2’” by itself (product 214”).

An IMUIje has multiplied two numbers with product 2 2”” or <
-23”.

An FIX, FIXR, GFIX or GFIXR has fetched an operand with
exponent > 35.

A GDFIX or GDFIXR has fetched an operand with exponent >
70.

A GFIXR has fixed a number with exponent 35 and fraction Z- 1
- 2-.7”.

Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

1 Carry 0 - if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDx has added two negative numbers with sum < -235.

A DADD has added two negative numbers with sum < -2”.

An SUBx has subtracted a positive number from a negative
number with difference < -2””

A DSUB has subtracted a positive number from a negative num-
ber with difference < -2’“.

An SOJx or SOSx has decremented -5?.

June 1982 User Operations 2-67

But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDx or DADD both summands were negative, or their
signs differed and their magnitudes were equal or the positive
one was the greater in magnitude.

In an SUBX or DSUB the signs of the operands were the same
and AC was the greater or the two were equal, or the signs of the
operands differed and AC was negative.

An AOJX or AOSr has incremented -1.

An SOJx or SO% has decremented a nonzero number other than
-235.

An MOVNx has negated zero.

A DMOVN or DMOVNM has negated zero (this condition does
not affect the flags in the KIlO).

2 Carryl- if set without Carry 0 (bit 1) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDx has added two positive numbers with sum 3 235.

A DADD has added two positive numbers with sum 2 Z7’.

An SUBx has subtracted a negative number from a positive
number with difference 2 235.

A DSUB has subtracted a negative number from a positive num-
ber with difference 2 270.

An AOJx or AOSX has incremented 235 - 1.

An MOVNx or MOVMx has negated -235.

4 DMOVN or DMOVNM has negated -2” (this condition does
not affect the flags in the KIlO).

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

3 Floating Overflow - any of the following has set Overflow:

I

In a standard range floating point instruction other than FLTR
or DFN, the exponent of the result was or would have been
(GSNGL) > 127.

I

In a G format floating point instruction other than GFLTR,
DGFLTR or GDBLE, the exponent of the result was > 1023.

Floating Underflow (bit 11) has been set.

No Divide (bit 12) has been set in an FDVx, FDVR.r, DFDV or
GFDV.

4 First Part Done - the processor is responding to a priority interrupt
between the ,parts of a two-part instruction or to a page failure in the
second part. A 1 in this bit indicates that the first part has been

User Operations June 1982

completed, and this fact should be taken into account when the pro-
cessor restarts the instruction at the beginning upon the return to
the interrupted program. For example, if an ILDB or IDPB is inter-
rupted after the processing of the pointer but before the processing of
the byte, the pointer now points not to the last byte, but rather to the
byte that should be handled at the return Thus when the processor
restarts the instruction, it must retrieve the pointer but not incre-
ment it. Note however that this flag is solely for use by the hardware:
it is saved and restored by the Monitor, and the user should never
touch it. On the other hand, if a trap handler (which may be supplied
by the user) does any byte operations, the state of this flag must be
taken into account; for details refer to the discussion of “special con-
siderations” at the end of each of the sections on the interrupt.

5 User - the processor is in user mode.

6 User In-out - even with the processor in user mode, the program can
use in-out instructions.

7 Publi?’ - the last instruction performed was fetched from a public
area of memory, i.e. the processor is in user mode public or executive
mode supervisor.

8 Address Failure Inhibit2’ - an address failure cannot occur during
the next instruction.

9 Trap 22’ - if bit 10 is not also set, stack overflow has occurred.
Unless the pager is disabled, the setting of this flag immediately
causes a trap as explained at the end of this section. At present, bits 9
and 10 cannot be set together by any hardware condition.

10 Trap l*l - if bit 9 is not also set, arithmetic overflow has occurred.
Unless the pager is disabled, the setting of this flag immediately
causes a trap as explained at the end of this section. At present, bits 9
and 10 cannot be set together by any hardware condition.

11 Floating Underflow - either of the following has set Overflow and
Floating Overflow:

In a standard range floating point instruction other than FLTR
or DFN, the exponent of the result was or would have been
(GSNGL) < -128.

In a G format floating point instruction other than GFLTR,
DGFLTR or GDBLE, the exponent of the result was < -1024.

*’ Not available in the KAlO or KSlO.

*’ Not available in the KAlO.

June 1982 User Operations 2-68.1

12 No Divide - any of the following has set Overflow:

In a DIVx or DDIV the high order half of the dividend was
greater than or equal to the divisor.

In an IDIVx the divisor was zero, or the dividend was -235 and
the divisor was 2 1 o

In an FDVx, FDVRx, DFDV or GFDV the divisor was zero, or the
dividend fraction was greater than or equal to twice the divisor
fraction in magnitude; in either case Floating Overflow has been
set. If normalized operands are used, only a zero divisor can
cause floating division to fail.

In an ADJBP the number of bytes per word was zero.

June 1982 User Operations 2-69

The JRST Instruction

The basic use of this instruction is as a straightforward jump - it is the
fastest jump and is the preferred instruction for such use. However it also
allows the programmer to select individual functions by means of bits 9-12
of the instruction word. All KIlO and KAlO functions are included in the
KLlO-KS10 set, but the method of decoding is so different that the instruc-
tion is described twice, first for the KLlO and KSlO, then for the earlier
processors. Most of the functions are illegal in some circumstances on at
least some processors; when a function is illegal, the instruction executes as
an MUUO (42.16) instead of performing the given function The instruction
descriptions explain what each function does when it is legal. Between the
two descriptions is a table that indicates which of the functions are legal in
which p1 ocessors under what circumstances.

JRSf Jump and Restore (KblO-KSlO)

Perform the function specified by F if it is legal. At present only ten func-
tions are defined, and for all but one of these MACRO recognizes individual
mnemonics for generating the combined 13-bit instruction codes (including
bits 9-12). The defined functions, with their function codes, mnemonics,
and combined instruction codes are as follows.

Mnemonic and
Instruction

F Code Function

00 JRST
25400

Jump to location E.

01 PORTAL
25404

If the instruction has been taken from a nonpublic area, clear
Public; then jump to location E. A location containing a
PORTAL is the only valid entry to a nonpublic area, and the
instruction places the processor in concealed or kernel mode.
Note that this function is equivalent to function 0 except when
the instruction is taken from a private area by a public pro-
gram, an event that cannot occur in a KS10 as it has no public
mode.

02 JRSTF
25410

Restore the program flags from bits O-12 of the final word used
in the effective address calculation (indirect or index word), and
jump to location E.

CAUTION

Restoring the flags requires that the instruc-
tion use indexing or indirect addressing.
Without indexing or indirection the result is
indeterminate.

.-

-

270 User Operations

04 HALT
25420

Restoration of all but the user and Public flags is directly
according to the contents of the corresponding bits in the flag
word: a flag is set by a 1 in the bit, cleared by a 0. A 1 in bit 5
sets User but a 0 has no effect, so the Monitor can restart a user
program by restoring flags but the user cannot leave user mode
by this method. A 0 in bit 6 clears User In-out, but a 1 sets it
only if the JRST is being performed by the Monitor, i.e. if User
is clear. A 1 in bit 7 sets Public, but a 0 clears it only if the
JRST is being performed in executive mode with a 1 in bit 5
(i.e. User is being set). These conditions imply that the proces-
sor is entering user mode: hence the user cannot enter
concealed mode by clearing Public; and although the supervisor
can place the processor in user mode concealed, it cannot use
this procedure to enter kernel mode.

Notes. The flag bits are assumed to be in a previously
stored PC word. If the PC word was stored in AC (as in a JSP),
a common procedure is to use AC to index a zero address (e.g.
JRSTF (AC)), so its right half becomes the effective (jump) ad-
dress If the PC word was stored in core (as in a JSR), one must
address it indirectly (remember, bits 13-17 of the PC word are
clear, so again its right half is the effective address). A JRSTF
(AC) is considerably faster than a JRSTF ~oPCWORD.

Load E into PC and halt the processor. While the KLlO is
halted the microcode runs in the halt loop, in which it will
handle interrupts on level 0 and will respond to console and
diagnostic functions from the front end. The KS10 microcode
performs the halt sequence discussed in $4.7, and then runs in
the halt loop in which it responds only to commands from the
console.

NOTE

The halt occurs of course only when the func-
tion is legal. But for debugging purposes the
function is often used when illegal (and it exe-
cutes as an MUUO).

05 XJRSTF
25424

Restore the program flags and PC (and the previous context
section, if appropriate) from a flag-PC doubleword in location
E,E + 1, and continue performing instructions in normal se-
quence beginning at the location then addressed by PC. Re-
strictions on the manipulation of the flags by the flag bits are
the same as those for JRSTF given above.

06 XJEN
25430

07 XPCW
25434

Restore the level on which the highest priority interrupt is cur-
rently being held (dismiss the interrupt (##3.1, 4.1)), and then
perform an XJRSTF (function 5).

Notes. This instruction can be used in any section, and it is
the only way to dismiss an interrupt routine or restore an in-
terrupted program in a nonzero section.

Save the program flags and PC (and the previous context sec-
tion, if relevant) in a flag-PC doubleword in location E,L3+ 1.
Then restore the flags and PC from a flag-PC doubleword in
location E + 2,E + 3, and continue performing instructions in
normal sequence beginning at the location then addressed by
PC. Restrictions on the manipulation of the flags by the flag
bits are the same as those for JRSTF given above.

User Operations 2-71

10 Restore the level on which the highest priority interrupt is cur-
25440 rently being held (dismiss the interrupt (##3.1, 4.1)).

12 JEN
25450

Restore the level on which the highest priority interrupt is cur-
rently being held (dismiss the interrupt (##3.1, 4.1)), and then
perform a JRSTF (function 2).

14 SFM
25460

Notes. This instruction can be used only for calling an in-
terrupt routine in a KS10 or an extended processor. In the lat-
ter case it is the recommended instruction. When it is so used,
the four-word block at location E must be in section 0, as that is
the default section for instructions executed in interrupt loca-
tions. The return from the routine would typically be made by
an XJEN that addresses the same block (i.e. that uses the first
doubleword in the block).

Save the program flags in bits O-12 of memory location E (clear
bits 13-23). If the instruction is given in executive mode in an
extended processor, save the previous context section in bits
24-35 (otherwise clear these bits as well).

The remaining undefined functions execute as MUUOs, as does any
defined function when it is illegal.

One can program a function by giving JRST with the equivalent of an
AC address that specifies the function code. For the sixteen forms of the
instruction, the following table lists the individual mnemonic if any, and
indicates where that form of the instruction is legal in each of the five
processors. The meanings of the symbols used to define the legal domains of
the functions are as follows.

Yes

Z

NZ

IO

K

No

-H

Legal everywhere

Legal only in section 0

Legal only in a nonzero section

Legal wherever IO instructions are legal, i.e. in user IO mode (User
and User In-out both set) and in kernel mode (executive mode in the
KS10 and KAlO)

Legal only in kernel mode (in the KSlO, executive mode is kernel
mode)

Legal nowhere (always executes as an MUUO)

Legal where indicated by first symbol but causes a halt

2-72 User Operations

-

JRST 0,

JRST 1,

JRST 2,

JRST 3,

JRST 4,

JRST 5,

JRST 6,

JRST 7,

JRST 10,

JRST 11,

JRST 12,

JRST 13,

JRST 14,

JRST 15,

JRST 16,

JRST 17,

JRST

PORTAL

JRSTF

HALT

XJRSTF

XJEN

XPCW

JEN

SFM

Extended
KLlO

Yes

Yes

Z
No
K-H

Yes

IO

IO

IO

No

z AIO”

No

NZ v IO”

No

No

No

Single-
section
KLlO

Yes

Yes

Yes

No

K-H

No

No

No

IO

No

IO

No

No

No

No

No

KS10 KIlO

Yes

Yes

Yes

No

K-H

Yes

K

K

IO

No

IO

No

K

No

No

No

Yes

Yes

Yes

Yes

K-H

K-H

K-H

K-H

K

K

K

K

K-H

K-H

K-H

K-H

KAlO

Yes

Yes

Yes

Yes

IO-H

IO-H

IO-H

IO-H

IO

IO

IO

IO

IO-H

IO-H

IO-H

IO-H

* JEN is legal only where IO is legal in section 0; SFM is legal anywhere in a nonzero
section and also where IO is legal in section 0.

JRST Jump and Restore (KHO-KAlO)

I
254 F I X Y I

0 89 I2 1314 17 18 35

Perform the functions specified by F if they are legal; then if the function
was performed and the processor is not halted, take the next instruction
from location E and continue sequential operation from there. Bits 9-12 are
programmed as follows.

Bit Function Produced by a 1 if Legal

9 Restore the level on which the highest priority interrupt is currently
being held (dismiss the interrupt (685.2, 5.5)).

10 Halt the processor. When it stops, the AR lights on the KIlO and the
MA lights on the KAlO display an address one greater than that of
the location containing the instruction that caused the halt, and PC
displays the jump address (the location from which the next instruc-
tion will be taken if the operator causes the processor to resume
operation without changing PC!).

AR or MA actually displays the address of the location that
would have been executed next had the JRST been replaced by a no-

User Operations 2-73

11

12

op. So except for a JRST in an interrupt, the lights point to the
location one beyond that containing the instruction that caused the
halt. This instruction is ordinarily the JRST or perhaps an XCT, but
could even be a UUO.

Restore the program flags from bits O-12 of the final word used in the
effective address calculation. Hence to restore flags requires that the
instruction use indexing or indirect addressing. Restrictions on the
manipulation of the flags by the flag bits are the same as those for
the KLlO JRSTF given above. (The notes on addressing given there
also apply. 1

KAIO. Enter user mode. The user program starts at relocated loca-
tion E.

KIIO. The instruction is simply a jump except when fetched from
a nonpublic area, in which case it clears Public. In other words a
location containing a JRST 1, is the only valid entry to a nonpublic
area, and the instruction places the processor in concealed or kernel
mode.

While the KAlO is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, the processor leaves user mode.

Notes. To produce one or a combination of these functions the program-
mer can specify the equivalent of an AC address that places 1s in the
appropriate bits, but MACRO recognizes mnemonics for the most important
13-bit instruction codes (bits O-12).

JRST JRST 0, Jump 25400

JRST 10, Jump and Restore Interrupt Level 25440

HALT JRST 4, Halt 25420

JRSTF JRST 2, Jump and Restore Flags 25410

PORTAL JRST 1, Allow Nonpublic Entry (KIlO) 25404
Jump to User Program (KAlO)

JEN JRST 12, Jump and Enable 25450

JEN completes an interrupt by restoring the level and restoring the flags
for the interrupted program. It is a combination of JRST 10, and JRSTF.

CAUTION

Giving a JRSTF or JEN without indexing or indirect ad-
dressing restores the flags from the instruction code itself.

Subroutine Calling

Currently the stack instructions PUSHJ and POPJ, described in the next
section, are employed almost universally for handling subroutines. De-
scribed here are four traditional subroutine-handling instructions, the first
two of which still enjoy some popularity.

2-74 User Operations

JSR Jump to Subroutine

I 2 6 4 A I X Y A is not used.22
0 89 I2 13 14 17 18 35

In section 0 save the program flags and PC in a PC word in location E; in a
nonzero section save PC in bits 6-35 of location E (clear bits O-5). In either
case jump to location E + 1. The flags are unaffected except First Part Done,
Address Failure Inhibit, and the trap flags, which are cleared.

While the processor is in user mode, if this instruction is executed as
an interrupt instruction (or by a KAlO MUUO), the processor leaves user
mode, clearing Public. (An interrupt that is not dismissed automatically
returns control to kernel mode.)

JSP Jump and Save PC

I 265 A I X Y 1 u 89 12 1314 17 18 35

In section 0 save the program flags and PC in a PC word in AC; in a
nonzero section save PC in AC bits 6-35 (clear bits O-5). In either case
jump to location E. The flags are unaffected except First Part Done, Ad-
dress Failure Inhibit, and the trap flags, which are cleared.

While the KIlO or KAlO is in user mode, if this instruction is executed
as an interrupt instruction (or by a KAlO MUUO), the processor leaves
user mode, clearing Public. (An interrupt that is not dismissed automati-
cally returns control to kernel mode.)

When a subroutine is called in section 0 by a JSR M, the typical
method of returning from it is to give a JRSTF ((1 M, which not only returns
to the original program but also restores the original states of the program
flags using the PC word saved by the JSR. In a nonzero section there is an
analogous procedure using a flag-PC doubleword. The subroutine is called

by

SFM M
JSR M+l

and the return is made by XJRSTF M. A similar analogy holds for JSP. The
following discussion of subroutine calling is geared to section 0, but its
extension to nonzero sections is straightforward, by such substitutions as a
flag-PC doubleword for a PC word, XJRSTF for JRSTF, and so forth.

22 The A portion of this instruction is reserved and should be zero.

User Operations %75

JSR and JSP are unconditional, but the execution of such an instruc-
tion can be the result of a decision made by any conditional skip or jump. In
the case of the flags, a basic overflow test and subroutine call can be made
as follows.

JOV
JRST
JSR

.+2

.+2
OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must
first read the flags into a test accumulator T and then use a test instruc-
tion.

JSP
TLNE
JSR

T,. + 1
T,40
DIVERR

Store flags but continue in sequence
;40 left selects bit 12
Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, re-
turning to the location following the JSR. But there are two ways to get
back from a JSP. We can address the PC word indirectly with a JRST @AC
(or JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a JRST
N(AC).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain:

JSP T,PRINT ;Put PC word in accumulator T
; Text inserted here by ASCIZ
;i seudo-instruction, which
;: utomatically places a zero (null)
;c iaracter at the end

. . . ;r‘ ext instruction here

The subroutine can use T as a byte poi ter ($2.11) that already addresses
the first word of data. For the print r-1 utine, characters are loaded into
another accumulator CH.

2-76 User Operations

.-

PRINT: HRLI T,440700 ;Initialize left half of pointer for
;size 7, position 36

ILDB CH,T ;Increment pointer and load byte
JUMPE CH,l(T) ;Upon reaching zero character

;return to one beyond last data word
;Print routine

JRST PRINT + 1 ;Get next character

The next two instructions have no capacity for handling extended ad-
dresses. Hence their usefulness is limited to making intrasection subrou-
tine calls. However most programmers regard them as obsolete anyway, as
they have been supplanted entirely by the stack instructions.

JSA Jump and Save AC

I 2 6 h A 1 X Y

0 89 121314 17 18 3s

Save AC in location E, the in-section part of E in AC left, and the in-section
part of PC in AC right. Then jump to location E + 1. The original contents of
E are lost.

While the KAlO is in user mode, if this instruction is executed as an
interrupt instruction or by an MUUO, the processor leaves user mode.

JRA Jump and Restore AC

I 2 h 7 A / X Y I
0 89 12 I314 I7 I8 35

Place the contents of the location addressed by AC left into AC, and jump to
location E.

A JSA combines advantages of the JSR and JSP. JSA does modify
memory, but it saves PC in an accumulator without losing its previous
contents (at a cost of not saving the flags). It is thus convenient for multi-
ple-entry subroutines. In a subroutine called by a JSR, the returning JRST
must refer to the (single) entry point. Since a JRA can retrieve the original
PC by addressing AC as an index register, it is independent of any entry
point without tying up an accumulator to the extent a JSP would. The
accumulator contents saved by a JSA are restored by a JRA paired with it
despite intervening JSA-JRA pairs. Hence these instructions are especially
useful for nesting subroutines.

User Operations 2-77

Overflow Trapping23

In the performance of a program there are many events that cannot be
foreseen and whose occurrence requires special action by the program.
There are instructions that test for the conditions produced by such events,
but in say a long string of computations, it would be both cumbersome and
time consuming to test for overflow at every step. It is far better simply to
allow an event such as overflow to break right into the normal program
sequence.

For situations of this nature, various internal conditions can act
through the priority interrupt system. However the processor also has a
trapping mechanism that allows conditions due directly to the program,
and which are often permitted to happen as a matter of course, to break
into the program sequence without recourse to the interrupt system. In
some cases, traps are used to handle the restrictions that play a role in
program and memory management (as explained in later chapters), but
here we are concerned specifically with action by the processor in response
to overflow.

An instruction in which an arithmetic overflow condition occurs sets
Overflow and Trap 1, and an instruction in which a stack overflow occurs
sets Trap 2. Note that it is the overflow condition that sets Trap 1 - not the
state of the Overflow flag. Hence an overflow is trapped even if Overflow is
already set. Note also that the trap flags have no effect at all when paging
is disabled. Otherwise at the completion of an instruction in which either
trap flag is set, rather than going on to the next instruction as specified by
PC, the processor instead executes an instruction taken from a particular
location in the process table for the program (user or executive). The loca-
tion as a function of the trap flags set is as follows.

Trap Flags Set Trap Type Trap Number Location

Trap 1 only Arithmetic overflow 1 421

Trap 2 only Stack overflow 2 422

Trap 1 and 2 Not used by hardwarez4 3 423

A trap instruction is executed in the same address space and section as the
instruction that caused it. Overflow in a user instruction traps to a location
in the user process table, and any addresses used in the instruction in that
location are interpreted in the user address space. Thus a user program can
handle its own traps, e.g. by requesting the Monitor to place a PUSHJ to a
user routine in the trap location. An MUUO must be used if the Monitor is
to handle a user-caused trap.

23 This feature is not available in the KAlO. That processor is limited to the use of internal
conditions that can act through the interrupt system (%X5).

24 A trap can be produced artifically simply by setting up the trap flags from bits in a flag
word. In this way the program can also use trap number 3, which at present cannot result
from any hardware-detected condition and is reserved.

2-78 User Operations

The location of the instruction that caused the overflow can be deter-
mined from PC unless the instruction jumped, in which case its location can
be determined only for a PUSHJ, from the stack entry. The trap instruction
(the final instruction in an XCT and/or LUUO string) clears the trap flags,
so the processor returns to the interrupted program unless the trap instruc-
tion changes PC. Thus the trap instruction can be a no-op (which ignores
the trap), a skip, a jump, or anything else. However, should the trap in-
struction itself set a trap flag (not necessarily the same one), a second trap
occurs. An arithmetic instruction that overflows on every iteration pro-
duces an infinite loop if used as a trap instruction for arithmetic overflow.
A stack instruction in a stack overflow trap can overflow only once. (The
memory allocated to a stack should have at least one extra location to
handle this case - two extras if’the program and the trap both use the
same pointer.)

An interrupt can occur between an instruction that overflows and the
trap instruction, but the latter will be performed correctly upon the return
provided the interrupt is dismissed automatically or the interrupt routine
restores the flags properly. If a single instruction causes both overflow and
a page failure, the latter has preference; but the overflow trap will be taken
care of after the offending instruction has been restarted and completed
successfully. A trap instruction that causes a page failure does not clear the
trap flags; hence after the page failure is taken care of, the trap instruction
will correctly handle the trap when it is restarted.

2.10 Stack Operations

A stack, or pushdown list, is simply a set of consecutive memory locations
from which words are read in the order opposite that in which they are
written. In more general terms, it is any list in which the only item that
can be removed at any given time is the last item in the list. This is usually
referred to as “first in, last out” or “last in, first out.” Suppose locations a, b,
c, . . . are set aside for a stack. We carrdeposit data in a, b, c, d, then read d,
then write in d and e, then read e, d, c, etc. Adding an item to the stack is
referred to as “pushing” or “pushing down”; removing an item is “popping.”
The stack is used in two ways: for handling data, and for saving and restor-
ing PC, as in calling and returning from a subroutine.

The mechanism for keeping track of the list is a stack pointer, which
specifies the position of the last item in it. This pointer is always kept in an
accumulator. In section 0 the pointer has two parts: the right half contains
the address of the last item, and the left half can contain a control count.
An instruction that pushes an item onto the list increments both parts of
the pointer by one, and then places the item in the newly specified location;
an instruction that pops an item takes it from the currently specified final
location, and then decrements both parts of the pointer by one so it points to
what has become the final item. To help prevent mismanagement of the
stack, the control count in the left half is monitored for overflow. The over-
flow condition, which sets the Trap 2 flag, is a change in the count from
negative to zero on a push or from zero to negative on a pop. The KAlO
lacks the trapping feature, so in it overflow sets the Pushdown Overflow
flag, which requests an interrupt on the level assigned to the processor

G5.6).

User Operations 2-79

By keeping a control count in AC left, the programmer can set a limit
to the size of the list by starting the count negative, or he can prevent the
program from extracting more items than there are in the list by starting
the count at zero, but he cannot do both at once. The common practice is to
limit the size of the list. If only jump addresses are kept in the stack, the
size limitation restricts the depth of nesting. A technique to catch extra
popping of jump addresses is to put the address of an error routine at the
bottom of the stack.

In a nonzero section there are two pointer formats, local and global. A
local pointer is just like the one used in section 0, with the same manipula-
tion in pushing and popping, except that the left half must be negative or
zero (like a local index register). Restriction to a negative control count
means it can be used only to limit the size of the list, as the only meaning-
ful overflow condition is the change to zero on a push. AC right contains a
local address that is interpreted as being in the same section as the instruc-
tion. Note that a local stack wraps around in the local section.

A global stack pointer is one in which bits 6-35 contain a global ad-
dress, and since bits Or5 must be zero, it is identified by the left half being
nonzero positive. Manipulation of a global pointer by pushing and popping
is simply incrementing and decrementing the 30-bit address by one, and a
global stack can therefore cross section boundaries. There is no control
count, but the program can limit stack size by making the pages at either
end inaccessible. Note that pushing on a local stack whose pointer has
already overflowed (whose control count has gone to zero) changes the
pointer to the global format, and it then addresses a location in section 1.
Similarly, adjusting a global stack pointer into the “section” beyond 7777
changes it to the local format. (A pointer with a 0 in bit 0 and any arbitrary
configuration in bits l-5 is interpreted as local or global depending on
whether or not bits 6-17 are zero.)

The processor implements program use of the stack by providing five
instructions: one for making arbitrary adjustments of the pointer, and two
pairs for pushing and popping. One pair handles data; the instructions in
the other are jumps that use the stack for handling subroutines.

PUSH Push

” H9 12 1314 17 IR 3s

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), add one to each half of AC, then move the contents of
location E to the location now addressed by AC right. If the addition causes
the count in AC left to reach zero, set Trap 2.25 If the program is running in

25 In the KAlO, incrementing and decrementing both halves of AC together is effected by
adding and subtracting 1000001,. Hence a count of -2 in AC left is increased to zero if
2l”-1 is incremented in AC right. and conversely, 1 in AC left is decreased to -1 if zero is
decremented in AC right. Also in the KAlO there are no trap flags, so Pushdown Over-
flow is set instead.

2-80 User Operations

a nonzero section with a 0 in AC bit 0 and AC bits 6-17 nonzero, add one to
AC, then move the contents of location E to the location now addressed by
AC bits 6-35. The contents of E are unaffected, the original contents of the
location added to the stack are lost.

Notes. Do not allow the pointer to address AC, as the result of the
instruction is then indeterminate.

POP POP

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), move the contents of the location addressed by AC right to
location E, then subtract one from each half of AC. If the subtraction causes
the count in AC left to reach -1, set Trap 2.25 If the program is running in a
nonzero section with a 0 in AC bit 0 and AC bits 6-17 nonzero, move the
contents of the location addressed by AC bits 6-35 to location E, then sub-
tract one from AC. The original contents of location E are lost.

Notes. Do not use the instruction POP AC,AC as its result is indetermi-
nate. To decrement the pointer by one position (in other words to throw
away the last item in the stack), give a POP AC,(AC) or ADJSP AC,-1.

Example. In section 0 a POP can be used to implement a reverse BLT,
i.e. to transfer a block of words from one area of memory to another, start-
ing at the largest addresses and proceeding to the smallest. To move a block
of N words from a source area to a destination area whose maximum ad-
dresses are S and D respectively, the program must first set up a stack
pointer in accumulator T, where T left contains N - 1 + 400000 and T right
contains S. The transfer is then effected by this pair of instructions

POP T&S(T)
JUMPL T,.-1

where the jump returns to the POP until T left is less than 400000, i.e.
until it looks positive. The 400000 added into T left prevents overflow, but
also limits the block to 2i7 words.

User Operations 2-81

PUSHJ Push and Jump

I 2 6 0 A I X Y
0 a9 121314 17 la 35

Take one of these three courses of action.

If the program is running in section 0, add one to each half of AC, then
save the program flags and PC in a PC word in the location now ad-
dressed by AC right. If the addition causes the count in AC left to reach
zero, set Trap 2.25

If the program is running in a nonzero section but AC left is negative
(or AC bits 6-17 are zero), add one to each half of AC, then save PC in
bits 6-35 of the location now addressed by AC right (clear bits O-5). If
the addition causes the count in AC left to reach zero, set Trap 2.25

If the program is running in a nonzero section with a 0 in AC bit 0 and
AC bits 6-17 nonzero, add one to AC, then save PC in bits 6-35 of the
location now addressed by AC (clear bits O-5).

Then jump to location E.
The flags are unaffected except First Part Done, Address Failure In-

hibit, and the trap flags, which are cleared. However, overflow overrides
the Trap 2 clear, so if the list overflows, Trap 2 sets and the processor traps
instead of jumping. The original contents of the location added to the list
are lost.

While the KIlO or KAlO is in user mode, if this instruction is executed
as an interrupt instruction (or by a KAlO MUUO), the processor leaves
user mode, clearing Public. (An interrupt that is not dismissed automati-
cally returns control to kernel mode.)

POPJ Pop and Jump

I 2 6 3 A / X Y E is not used.26
0 a9 121314 17 la 35

Take one of these three courses of action.

If the program is running in section 0, subtract one from each half of
AC. If the subtraction causes the count in AC left to reach -1, set Trap
2.25 Then jump to the location addressed by the right half of the location
that was addressed by AC right prior to the decrementing.

If the program is running in a nonzero section but AC left is negative
(or AC bits 6-17 are zero), subtract one from each half of AC. If the
subtraction causes the count in AC left to reach -1, set Trap 2.25 Then
jump to the location addressed by bits 6-35 of the location that was
addressed by AC right prior to the decrementing.

26 I, X and Y are reserved and should be zero.
-

2-82 User Operations

If the program is running in a nonzero section with a 0 in AC bit 0 and
AC bits 6-17 nonzero, subtract one from AC, and jump to the location
addressed by bits 6-35 of the location that was addressed by AC bits
6-35 prior to the decrementing.

CAUTION

The jump is completed before the processor responds to over-
flow. Hence it is impossible to determine the location of the
POPJ that caused the overflow.

ADJSP Adjust Stack Pointer“7

10.5 A I x Y I
u 89 12 13 14 17 18 35

If the program is running in section 0 or AC left is negative (or AC bits
6-17 are zero), add the in-section part of E algebraically (bit 18 is the sign)
to each half of AC. If a negative E, changes the count in AC left from
positive or zero to negative, or a positive E, changes the count from nega-
tive to positive or zero, set Trap 2. If the program is running in a nonzero
section with a 0 in AC bit 0 and AC bits 6-17 nonzero, add the in-section
part of E algebraically to AC.

Notes. When an ADJSP changes the control count in a local pointer in
a nonzero section from negative to positive, the result will appear to be a
global pointer. Similarly an overflow to negative can occur only from zero,
as otherwise the original would have been taken as global (excluding the
irrelevant case of AC left being greater than zero only because of bits l-5
being nonzero).

A stack is very convenient for a program that can use data stored in
this manner as the pointer is initialized only once and only one accumula-
tor is required for the most complex stack operations. To initialize a local
pointer P for a list to be kept in a block of memory beginning at BLIST and
to contain at most N items, the following suffices.

MOVSI P,-N
HRRI P,BLIST-1

27 In the KIlO and KAlO this instruction is trapped as an unassigned code.

User Operations 2-83

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N - 1. Using MACRO to full advantage one could
instead give

MOVE P,IIOWD N,BLISTl

where the pseudoinstruction

IOWD J,K

is replaced by a word containing - J in the left half and K - 1 in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and
sets aside the N locations beginning at that point.

Since the stack is independent of the subroutine called, PUSHJ-POPJ
can be used for multiple entries. Moreover, ordering by level is inherent in
the structure of a stack, so paired PUSHJ-POPJ instructions are excellent
for nesting subroutines: there can be any number of subroutines at any
level, each with more subroutines nested within it. Recursive subroutines
are also easily programmed.

The stack instructions do tie up an accumulator, but the usual proce-
dure is to keep both data and jump addresses in a single list so only one AC
is required for most operations. The programmer must keep track of
whether a given entry in the list is data or a saved PC; in other words,
generally every item inserted by a PUSH should be removed by a POP or
ADJSP, and every PUSHJ should be matched by a POPJ. If flag restoration
is desired in section 0, the returning

POPJ P,

can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data
may be stored in the left halves of the PC words in the stack, reducing the
required pushdown depth.

The stack is kept in a random access memory, so the restrictions on
order of entry and removal of items actually apply only to the st,andard
addressing by the pointer in stack instructions - other addressing methods
can reference any item at any time. The most convenient way to do this is
to use the address part of the pointer as an index. To move the last entry to
accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list - the word moved remains the last
item in it.

-

2-84 User Operations

One usually regards an index register as supplying an additive factor

/ for a basic address contained in an instruction word, but the index register
.4 can supply the basic address and the instruction the additive factor. Thus

we can retrieve the next to last item by giving

MOVE AC-l(P)

and so forth. Similarly

PUSH

appends the third to
calculated before the

POP

P,-3(P)

last item to the end of the list (remember that E is
contents of P are changed).

P,-Z!(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

An ADJSP can delete an entire block from a stack, and in combination
with a BLT it can be used to add a whole block.

2.11 Byte Manipulation2”

This set of six instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always be-
tween AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right justified in AC.

The byte manipulation instructions have the standard memory refer-
ence format, but the effective address E is used to retrieve a pointer, which
is used in turn to locate the byte or the place that will receive it. A pointer
restricted only to local addressing is always one word and has the format

P s lO]ll x 1 Y
0 56 II I2 13 14 I7 111 3s

where S is the size of the byte as a number of bits (with zero S specifying a
null byte), and P is its position as the number of bits remaining at the right
of the byte in the word (e.g. ifP is 3 the rightmost bit of the byte is bit 32 of
the word). The rest of the pointer is interpreted in the same way as in an
instruction: I, X and Y are used to calculate the address of the location that
is the source or destination of the byte; the address calculation begins in
the section containing the pointer,

In section 0 the pointer is always of the above type - local and one
word - and P must be < 36. In a nonzero section the pointer can be local in
the above format, but it can also be global in either a one or two-word

28 In a KAlO without byte manipulation hardware, all of the instructions presented in this
section are trapped as unassigned codes.

June 1982 User Operations 2-85

format. The one-word global pointer is available only with TOPS-20 micro-
code version 271 or greater, cannot use indirection, and provides for only
the most common byte sizes via this format: -

P&S I 30-BIT ADDRESS

0 5 6 35

where the address can point to any section, and the left six bits specify both
byte position and size by a number > 36 as follows.

P&S P S P&S P s

37 36 6 49 36 7

38 30 6 50 29 7

39 24 6 51 22 7

40 28 6 52 15 7
41 12 6 53 8 7

42 6 6 54 1 7

43 0 6

55 36 9
44 36 8 56 27 9
45 28 8 57 18 9
46 20 8 58 9 9
47 12 8 59 0 9

48 4 8

60 36 18
61 18 18
62 0 18

For unrestricted use in a nonzero section, the pointer can be a doubleword
in location E_E+ 1 with this format:

P s 1 RESERVED AVAILABLE TO USER

O]Il x Y I
0 1 2 5 6 11 12 13 17 I8 35

which allows unlimited pointing, as P and S are independent, and the
second word can be local or global, direct or indirect (see the discussion of
indirect words in 31.6). The processor determines the number of words in a
pointer with independent P and S by the state of bit 12 in the first word (in
section 0 bit 12 is ignored and should be 0). Any type of pointer aims at a
word whose format is

I
0

P BITS
I

35-p-s+ I 35-P 35-p+ I 35

where the shaded area is the byte.
Bytes are always contiguous within a word, and the forward order is

left to right in words and from low to high addresses. The position of the
byte area in a word is called the “byte alignment.” Let P be the position of a
specified byte; 36 - P is then the number of bits in the left part of the word
including the given byte and all byte positions at the left of it. Dividing

User Operations June 1982

36 - P by S gives the number of byte positions in this left part, and the
remainder is those extra bits at the left end that are not in any byte posi-
tion. This number of extra bits is the byte alignment.

A block of &bit bytes might look like this.

Y

Y+l

Y+2
.
.
.

In the first word, the first byte can occupy any position, but as many bytes
as will fit are packed into the rest of the word at the right. In the second
and all succeeding words, the byte alignment is zero no matter where the
bytes may start in the first word, and as many as will fit are packed into
every word, although the last may run short. In our example the byte
alignment in the first word is 3, even though two byte positions are not
used: the alignment is always less than S and is the number mod S of bits
at the left of the first byte. Bytes are assumed to be handled consecutively
in the forward direction only, and for this type of processing the pointer is
“incremented. Since bytes are contiguous and are processed from left to
right, incrementing merely replaces the current value of P by P - S, unless
there is insufficient space in the present location for another byte of the
specified size (P - S < 0). In this case Y is increased by one2’ to point to the
next consecutive location, and P is set to 36 - S to point to the first byte at
the left in the new location.

To facilitate processing a series of bytes, two of the byte handling in-
structions increment the pointer before handling the byte. A typical proce-
dure for using these instructions is to set up the pointer initially to point at
the byte position preceding the first byte.

The pointer is referred to as being “at location E," which means that it
is either a single word in location E or a doubleword in location E,E+ 1.
Local and global pointers, and the operations associated with them as de-
scribed above, are also utilized in handling byte strings, which are dis-
cussed in the three sections following this one.

CAUTION

Giving a pointer with P or S greater than 36 produces an
indeterminate result in any instruction that uses it. A P of 36
should be used only for initial incrementing by an ILDB or
IDPB (its effect on an LDB or DPB is indeterminate).

If both P and S are less than 36 but P + S > 36, a byte of
size 36 - P is loaded from position P, or the right 36 - P bits
of the byte are deposited in position P.

Giving a one-word global pointer with a P&S number of
63 causes an instruction that uses it to be trapped as an‘
MUUO.

2g Caution: In the KAlO do not allow Y to reach maximum value. The whole pointer is
incremented, so if Y is 2’” - 1 it becomes zero and X is also incremented. The address
calculation for the pointer uses the original X, but if an interrupt should occur before the
calculation is complete, the incremented X is used when the instruction is repeated.

June 1982 User Operations 2437

LDB Load Byte

I
135 1 A 111 X 1 Y I

0 a9 I2 1314 I1 I.8 35

Retrieve a byte of S bits from the location and position specified by the
pointer at location E, load it into the right end of AC, and clear the remain-
ing AC bits. The location containing the byte is unaffected, the original
contents of AC are lost.

DPB Deposit Byte

I 137 A II X Y I
0 89 I2 I3 14 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer at location E. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

IBP Increment Byte Pointer

133 1 00]I1 X 1 Y Bits 9- 12 = 0.
0 89 12 1314 1718 35

Increment the byte pointer at location E, setting the byte alignment to zero
if the incrementing crosses a word boundary, as explained above.

Notes. Giving this instruction code with bits 9-12 nonzero produces the
ADJBP instruction described at the end of the section. In the KIlO and
KAlO, only the IBP form is available and bits 9-12 are ignored (but should
be zero).

ILDB Increment Pointer and Load Byte

I 134 A I X Y 1 u I39 12 1314 1718 3s

Increment the byte pointer at location E, setting the byte alignment to zero
if the incrementing crosses a word boundary, as explained above. Then
retrieve a byte of S bits from the location and position specified by the
newly incremented pointer, load it into the right end of AC, and clear the
remaining AC bits. The location containing the byte is unaffected, the orig-
inal contents of AC are lost.

-

User Operations June 1982

IDPB Increment Pointer and Deposit Byte

/
\

Increment the byte pointer at location E, setting the byte alignment to zero
if the incrementing crosses a word boundary, as explained above. Then
deposit the right S bits of AC into the location and position specified by the
newly incremented pointer. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

Note that in the pair of instructions that both increment the pointer
and process a byte, it is the modified pointer that determines the byte
location and position. Hence to unpack bytes from a block of memory, the
program should set up the pointer to point to a byte just before the first
desired, and then load them with a loop containing an ILDB. If the first
byte is at the left end of a word, this is most easily done by initializing the
pointer with a P of 36 (448). Incrementing then replaces the 36 with 36 - S
to point to the first byte. For the convenience of the programmer, MACRO
has a pseudoinstruction for setting up such a pointer: in assembly

POINT S,Y

is replaced by a pointer that points to a byte of size S at position 36 in
location Y. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine).

ADJBP Adjust Byte Pointer

I 133 A / x Y A f 0.
0 n9 12 1314 I7 IX 3s

Take one of these three courses of action depending on the value of S in the
pointer at location E.

If S is 0, place an unmodified copy of the pointer in AC or AC,AC + 1.

If S is greater than 36 minus the byte alignment given by the pointer -
so not even one byte will fit in a word - set Trap 1, Overflow and No
Divide, and go on to the next instruction without affecting the ACs or
memory.

If S is greater than 0 but less than 36 minus the byte alignment, make a
copy of the pointer from location E or E,E+ 1, and “adjust” the copy,
forward or back, by the number of byte positions specified by AC, pre-
serving the byte alignment across wprd boundaries: if AC contains a posi-
tive number N, adjust the copy by N bytes forward; if AC contains a

June 1982 User Operations 2-89

negative number -N, adjust the copy by N bytes back. Place the revised
pointer copy in AC or AC,AC + 1 as appropriate. The original pointer is
unaffected; the original contents of AC or AC,AC + 1 are lost.

Notes. The adjustment always produces a pointer that specifies an
actual byte; e.g. adjusting a pointer with a P of 36 by zero bytes results in a
pointer that specifies the rightmost byte in the preceding word. Note that if
the pointer specifies a byte alignment of zero, there is no difference between
“adjusting” it by N and “incrementing” it N times (except that the latter
actually modifies the pointer). Since the result goes to AC, it is not gener-
ally useful to adjust a local pointer that is in a different section from the
instruction.

Giving this instruction code with a zero A field or in a KIlO or KAlO
produces the IBP instruction described above. Note that if S = 0, this
instruction is equivalent to MOVE.

This last instruction facilitates selection of individual bytes at arbi-
trary positions in an array whose format differs from the linear format used
by the incrementing instructions in that’the adjustment preserves the byte
alignment across word boundaries. As an example of this format, let us
again use &-bit bytes where the pointer specifies one in the same position as
byte 0 in our linear example at the beginning of the section. Such an array
would look like this.
.
.
.

Y-2 3 BYTE -10 BYTE -9 BYTE -8 BYTE -7 1

Y-l 3 BYTE -6 BYTE -5 BYTE -4 BYTE -3 1

Y 3 BYTE -2 BYTE -I BYTE 0 BYTE I 1

Y+1 3 BYTE 2 BYTE 3 BYTE 4 BYTE 5 I

Y+2 3 BYTE 6 BYTE 7 BYTE 8 BYTE 9 I

Here the bytes are ordered in either direction from the zero position, and
the byte alignment determined by the pointer is preserved throughout all
words in the block. Bytes are packed as many as will fit in all words (except
perhaps at either end of the block), but within the restriction that the
alignment be preserved. For example, with lo-bit bytes there are always
three per interior word in the linear format, but in the array format with
an alignment of 8, there are only two, occupying bits 8-17 and 18-27.
Specification of an arbitrary byte anywhere in the array is accomplished by
using an ADJBP. The microcode makes the adjustment by changing Y to
the location containing the byte and then setting up a new P for the specific
byte.

Suppose we have bytes packed five to a word, a pointer at location E
now points to the third byte in a given location, and we wish to retrieve the
thirty-first (the fourth byte from the sixth location) beyond that. This rou-
tine loads the desired byte into AC.

z-90 User Operations June 1982

MOVE1 AC,37
ADJBP AC,E ;Adjust by 31io
LDB AC,AC

2.12 String Manipulation30

This and the next two sections treat the instructions that handle strings.
All string instructions are in the extended instruction set, and all therefore
have a two-word format, the first word being EXTEND. The second instruc-
tion word, whose own effective address is EI, is at location EO, which is the
effective address of the EXTEND. An instruction that “offsets” uses El as a
signed offset, in which bit 18 is the sign. An instruction that “translates” or
“edits” makes use of a translation table that begins at El.

A string is a sequence of bytes as specified by successive states of a
standard byte pointer of the type described in the preceding section, the
first page or so of which the reader should reread if he does not remember
in detail the format of the pointer, the way it is incremented, and the way
bytes are organized in consecutive words (specifically with zero byte align-
ment). The program defines a string by giving its length in number of bytes
and an initial value for the pointer. Initially the pointer must point to the
byte position preceding the first byte in the string, as every string instruc-
tion acts in a manner similar to a series of ILDBs or IDPBs, or in some
cases both. Hence all string operations are from left to right due to the way
byte pointers are incremented. A string byte pointer and length may define
a string of bytes or define a string space that will receive bytes. In an
instruction that moves a string, the actual string moved is referred to as
the source string, and the receiving space is referred to as the destination
string, even though initially the latter is a string of positions rather than
bytes. Note that source and destination strings need not be the same
length. When the source string is longer, only part of it will fit in the
destination space. Conversely when the source is shorter, it can be inserted
into part of the destination space, either starting at the left (left justified)
or placed so that its final byte is in the last destination position (right
justified).

Bytes may be of any size from zero bits to thirty-six, but in a given
string all are the same size as indicated by the pointer. The relationship
between source and destination byte sizes is a function of the way the
programmer uses his data and the meaning he assigns to it. Depending on
circumstances it may be desirable to spread out a source string into a desti-
nation space whose positions are larger than the source bytes (data is al-
ways right justified in a given byte position); or source bytes may be
truncated to fit into smaller destination positions (the truncation being
always from the left).

Most string operations make some use of bytes other than those in the
strings themselves. Such bytes may be special characters found in locations
EO + 1 and EO + 2, or substitutions supplied by a translation table. A byte

3o In the KIlO and KAlO these instructions are trapped as unassigned codes ($2.16).

June 1982 User Operations 2-91

from any location not in a string defined by the pointers and lengths associ-
ated with the instruction is always from the right end of the word or half
word containing it and has the same number of bits as the bytes in the
string in which it will be used.

The interior of a string space is all of those bits in the words containing
the string that lie between the first byte in the first word and the last byte
in the last word. Since byte alignment is zero, the string is packed solid
(with no unused interior bits) if 36 is an integral multiple of the byte size.
For sizes that do not pack solid, there will be unused interior bits except in
the last word, and they will lie at the right of the bytes in the words. If all
unused interior bits are OS initially in the string spaces (whether one or
two) specified by a string instruction, they are guaranteed to be OS at the
completion of the instruction. If such bits are not all OS initially, the subse-
quent states of unused interior destination bits are indeterminate (source
strings are unaffected by the instructions).

Bytes in a string may represent anything - digits, letters, special
characters. This section discusses the basic operations: those that compare
two strings, or move a string to a new position with optional offsetting or
translating of its bytes. The next section covers special operations for con-
verting between binary and decimal, where a decimal number is a string of
bytes representing decimal digits. $2.14 considers an instruction that is
effectively a whole routine for complex editing of a text string.

All string instructions skip the next instruction in the PC sequence if
all operations are carried out as expected, or a compare condition is satis-
fied, etc. Failure of a compare condition to be satisfied or something being
amiss (such as loss of bytes because the source string will not fit in the
destination space) usually causes the processor to perform the next instruc-
tion Note that the “next instruction” is relative to the EXTEND (or an
XCT that executes it) - in other words relative to the actual instruction
PC points to. The location of the second instruction word, which is actually
the operand of the EXTEND, does not affect the PC value.

Every string instruction uses a block of accumulators, which contain
one or two byte pointers. A pointer may be one word or two, local or global,
as explained at the beginning of 42.11. In the illustrations of the AC block
format for the extend instructions, pointers are always shown as a pair of
words in AC + N,AC + N + 1, where the actual byte pointer used may be in
the first accumulator or in both. However the reader should note that when
a global pointer is given as one word, the instruction always converts it
to two.

CAUTION

For the instructions described in this and the next two sec-
tions, the format illustrations show various parts of the accu-
mulators and instruction words as being zero. These parts
are reserved and must be zero. Failure to comply with this
requirement will cause an extend instruction to give an inde-
terminate result.

2-92 User Operations June 1982

Moreover there can be no overlapping of the various
quantities used in any extend instruction. The source and
destination spaces must never overlap; under no circum-
stances should any string overlap anything else used by the
instruction, such as the AC block, a translation table, an edit
pattern, special character locations following EO, or even the
instruction words themselves; and unused ACs in the speci-
fied block (such as that following a one-word byte pointer)
cannot be used for any other purpose (such as an index regis-
ter). Any such overlapping will cause the result of the in-
struction to be indeterminate.

This caution applies not only to the
discussed here, but also to those of the
follow.

basic instructions
two sections that

There are four move instructions. One right justifies the source string
in the destination space, without otherwise modifying it. The others move
the source string directly (i.e. left justified), with the bytes unmodified, or
all offset by a constant, or translated where every byte of a given value is
replaced by a corresponding substitution. The six compare instructions do
not affect the specified strings; instead they are compared according to a
collating sequence based on the algebraic relationships of their bytes taken
as unsigned binary numbers. All of these are two-word instructions, where
the first has the EXTEND code 123, and all use a block of six accumulators.

MOVSLJ Move String Left Justified

I] A 111 123 x 1 Y
89 I2 13 14 I7 I8 35 0

EO

EO+l

016 1 00 111 x 1 Y Bits9-12=0
I 1 I FILL El is not used. ”

0 a9 121314 I7 18 3s

Move the source string left justified into the destination string space.

31 Z, X and Y are reserved and should be zero.

June 1982 User Operations !2-92.1

Source and destination are defined by the contents of a block of six accumu-
lators

AC

AC+ I

AC+2

AC+3

AC+4

AC+5

000 SOURCF STKING LENCXH Bits O-8 = 0.

SOUKCtSTKlNG UYTF l'OINI'EK

I 000 I I)tSTINATION STRING LENGTH 1 Bits O-8 = 0.

[)tSTINATlON STRING UY I'E I'OINTtR

0 9 35

Beginning at the left, copy as many bytes from the source string as will
fit into the destination string space. If any source bytes are left over (i.e. if
the source string is longer than the destination string), go to the next
instruction. Otherwise place the fill character from EO + 1 in the remaining
destination byte positions (if any) and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC + 3 contains zero, and AC bits 9-35 contain the
number of source bytes not copied (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

MOVSO Move String Offset

I 123 A I X Y 1
” 89 121314 I7 18 35

I:‘0 014 1 00 1/l x [Y Bits 9- 12 = 0.

El)+1 FILL

0 89 I2 13 14 I7 I8 3s

Move the source string, with each byte offset by El, left justified into the
destination string space. Source and destination are defined by the contents
of a block of six accumulators.

AC 000 SOUKCF STKING LI:NGrH Bits O-8 = 0.

AC+ 1

AC+2 I-
SOUR~‘F. STRING HYTF POINTt-R

AC+3 000 I)~~STINATION STRING; LENC~~{ Bits O-8 = 0.

AC+4

t
I)k.STINATION STRING lIY.TE I'OINTER

AC+5 -1
0 9 35

Beginning at the left, read each byte from the source string, add EI to
it algebraically (bit 18 is the sign), and place the offset byte in the corre-
sponding position in the destination string space provided it is not larger

User Operations 2-93

than the specified byte size (i.e. there are no 1s outside the area containing
the offset byte in the register holding it). Continue in this fashion for each
source byte until an oversize offset byte is encountered, or either the source
string or the destination space is exhausted, whichever occurs first. Then if
there are any source bytes not moved (because an offset byte is oversize or
the source string is too long), go to the next instruction. Otherwise place
the fill character from EO + 1 in the remaining destination byte positions (if
any) and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC bits 9-35 contain the number of source bytes
not moved (if any), and AC + 3 bits 9-35 contain the number of destination
byte positions not used (if any). If unused interior bits in both strings are
clear initially, they are left clear; otherwise unused interior destination
bits are indeterminate. The source string is unaffected.

MOVSO with a zero offset is equivalent to MOVSIJ, but the
latter is faster and should always be used instead.

NOTE

MOVST Move String Translated

I 123 A I X Y 1
0 89 12 1314 17 18 35

EO 015 1 00 111 X 1 Y Bits 9-l 2 = 0. J

EO+l I , FILL

0 8 9 12 13 14 17 18 35

Move the significant part of the source string, with its bytes replaced by
bytes from a translation table at El, left justified into the destination
string space. Source and destination are defined by the contents of a block
of six accumulators. S is the significance bit: setting it signals the start of
that part of the source string that has significance, and bytes read while it
is on are regarded as significant.

.-

AC

AC+1

AC+2

AC+3

AC+4

AC+5

SNM 00 SOURCE STRING LENGTH Bits 3-8 = 0.

- SOURCE STRING BYTE POINTER

I 000 I DESTINATION STRING LENGTH I Bits O-8 = 0.

t

DESTINATION STRING BYTE POINTER

Beginning at the left, read each byte from the source string, and carry
out the corresponding translation function given in the appropriate half
word at location El + B/2 in the translation table, where B is the value of
the source byte. Each word in the table has this format.

2-94 User Operations

TRANSLATION FUNCTION FOR EVEN B TRANSLATION FUNCTION FOR ODD B

&GE 0
SUBSTITUTE FOR BYTE OP SUBSTITUTE FOR BYTE

(MAXIMUM 12 BITS) CODE 0 (MAXIMUM I2 BITS)

(“i 7 f #.,,, ,I), .‘.
_. *c,“.

,,, --

Location El + B/2
0 2 6 17 18 20 24

Perform the function specified by the op code in the half word
ing to the source byte as follows.

0 If S is 1 take the substitute in place of the source byte.

1 Terminate translation.

35

correspond-

2 If S is 1 take the substitute in place of the source byte. (Also clear M.)

3 If S is 1 take the substitute in place of the source byte. (Also set M.)

4 Set S and take the substitute in place of the source byte. (Also set N.)

5 Terminate translation. (Also set N.)

6 Set S and take the substitute in place of the source byte. (Also set N
and clear M.)

7 Set S and take the substitute in place of the source byte. (Also set N
and M.)

Then take one of these three courses of action:

If the function makes no substitution and does not terminate, read the
next byte from the source string and continue as described above.

If the function makes a substitution, place the substituted byte in the
next position in the destination string space, read the next byte from
the source string, and continue as described above.

If the function terminates the translation, go on to the next instruction.

Unless the translation is terminated by a translation function, con-
tinue the above procedure until either all source bytes are processed or the
destination string is filled, whichever occurs first. Then if any source bytes
are left over, go to the next instruction. Otherwise place the fill character
from EO+ 1 in the remaining destination byte positions (if any) and skip
the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, AC bits 9-35 contain the number of unprocessed
bytes in the source string (if any), and AC + 3 bits 9-35 contain the number
of destination byte positions not used (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

Notes. The translation table starts at location El, and since there are
two functions per word, it contains 2”-l locations, where n is the number of
bits in a byte. The address is generated by adding the left n - 1 bits of a
byte to El.

Of the three flags in AC bits O-2, only S is relevant to this instruction;
the translation functions do manipulate M and N, but their states have no
effect on the result. S being set means the translation has started. The
programmer can make the translation start at the beginning of a string by
having S already set when the instruction is given; or he can skip any
number of initial bytes in the source string, and have the translation

User Operations 2-95

started by the first occurrence of some byte whose associated function sets
S. Hence by the use of S and terminating functions, the programmer can
have an MOVST translate any contiguous subset of the source string.

MOVSRJ Move String Right Justified

I 123 A I X Y I
0 89 I2 13 14 1118 35

EO

EOt 1

017 1 00 111 x 1 Y Bits 9-1 3
EI is noi

= 0.
used.“’

I,ILL
I I

0 8 9 12 13 I4 17 IX 35

Move the source string right justified into the destination string space.
Source and destination are defined by the contents of a block of six accumu-
lators.

AC

AC+ 1

AC+2

AC+3

AC+4

AC+5

000 SOUKCI;. STKING LENGTH Bits O-8 = 0.

I 000 I DESTINATION STRING LENGTH 1 Bits O&8 = 0.

DESTINATION STKING 13YTE POINTER

0 9 35

Check the relation between the source and destination lengths to select
one of the following three courses of action.

If the source and destination strings are the same length, move the
source string into the destination space.

If the source string is shorter, place the fill character from E0+1 in
destination byte positions beginning at the left until there are just
enough places remaining in the destination space to accept the source
string. Move the source string into the remaining destination positions
at the right.

If the source string is longer, skip over enough source bytes at the left so
the remaining source substring will fit in the destination space. Move
the remaining source bytes into the destination space.

After completing the selected course of action, skip the next instruction.
At the end the byte pointers point to the last positions referenced in

source and destination, AC+3 contains zero, and AC bits 9-35 contain ‘the
number of source bytes skipped over (if any). If unused interior bits in both
strings are clear initially, they are left clear; otherwise unused interior
destination bits are indeterminate. The source string is unaffected.

-

2-96 User Operations

CMPS- Compare Strings

I 123 ‘4 I x Y I
0 89 I2 1314 17 18 35

I:‘() 00 c 00 111 x 1 Y (’ f 0, 4.
Bits 9- 17 = 0.

I:‘0+1 FILL I
. EI is not used.“’

1:‘0+2 r;ILL 2
A

0 5 6 8 Y 12 13 14 I7 I8 35

Compare two strings and skip the next instruction if the condition specified
by C is satisfied. The two strings are defined by the contents of a block of
six accumulators.

AC

AC+ 1

AC+2

AC+3

AC+4

AC+5

000 SlKING I Lt,NGTH Bits O-8 = 0.

000 STRING 2 LENGTH Bits O-8 = 0.

STKING 2 BYTk. POINTER

0 Y 35

Beginning at the left, compare string 1 with string 2, byte by byte,
until a pair of bytes that are not identical is encountered. If a string runs
out before an inequality is found, continue the comparison using a byte
from EO+l in lieu of bytes from string 1 or a byte from E0+2 in lieu of bytes
from string 2, whichever is shorter.

Upon either encountering an inequality between corresponding bytes
of the two strings or reaching the end of the longer string, stop the compari-
son and skip the next instruction if condition C is satisfied. The various
values of C select different conditions and therefore specific forms of this
instruction as follows.

CMPSL Compare Strings

CMPSE Compare Strings

CMPSLE Compare Strings
Equal to String 2

CMPSGE Compare Strings
Equal to String 2

CMPSN Compare Strings
String 2

CMPSG Compare Strings
String 2

and Skip if String 1

and Skip if String 1

and Skip if String 1

and Skip if String 1

and Skip if String 1

and Skip if String 1

Less than String 2

Equal to String 2

Less than or

Greater than or

Not Equal to

Greater than

001

002

003

005

006

007

At the end the byte pointers point to the last positions referenced in the
strings, and bits 9-35 of AC and AC + 3 contain the number of bytes left in
the strings beyond the unequal pair. The strings themselves are not af-
fected. Note that except in the case where the inequality occurs at the last

User Operations 2-97

byte, the comparison continues to the end of the strings only if they are
equal; and in both of these cases the final states of the pointers and lengths
are the same.

If an interrupt or page failure occurs during execution of a string move
or compare, the accumulators are adjusted for what has already been done.
Afterwards the instruction resumes as though starting at the beginning,
but manipulates substrings that are simply those parts of the original
strings left from where the instruction was interrupted.

Offset can be used to change a string of capitals to lower case by adding
40 octal to every byte. Text in upper and lower case can be converted to all
upper case by an MOVST with a translation table that substitutes capitals
for both. Compare is useful for such applications as alphabetizing strings
that represent words.

2.13 Decimal Conversion30

Included among the string instructions are four for converting between
binary and decimal. The binary is always a twos complement, double
length binary integer in the format given in Q1.4: the magnitude is the 70-
bit string in bits l-35 of the two words, bit 0 of the high order word is the
sign, and bit 0 of the low order word is a copy of the sign but is never used
in any operation. The decimal is a string of bytes representing decimal
digits (the reader should be familiar with the general information and cau-
tions about strings presented at the beginning of the previous section). To be
capable of conversion to double length binary, a decimal string can have a
maximum of twenty-two significant digits, although the string may be
longer because of the presence of leading zeros or nonnumeric characters.
The decimal value corresponding to the binary maximum of 270 is 1 180 591
620 717 411 303 424.

The four instructions are for converting with offset or translation in
the two directions. All are two-word instructions, where the first has the
EXTEND code 123, and all use a block of accumulators. Decimal to binary
uses five accumulators, and binary to decimal requires a block of six, but
one within the block is not used.

2-98 User Operations

CVTBDO Convert Binary to Decimal Offset

I 123 A I X Y

0 89 121314 17 18 35

I:‘0 012 I 00 111 X 1 Y 1 Bits 9-12 = 0.

Lo+1 FILL

0 8 9 12 13 14 17 18 35

CVTBDT Convert Binary to Decimal Translated

1 123 A / X Y

0 89 I2 1314 I7 I8 3s

‘E-0 013 00 1 x Y Bits 9-l 2 = 0.
1

‘E-0+1
I I FILL
1

0 8 9 12 I3 I4 I7 In 35

Convert the magnitude of a double length binary integer into a decimal
digit string, offset or translated. The integer is given and the string space
defined by the contents of a block of six accumulators.

AC

AC+1

AC+2

AC+3

AC+4

AC+5

DOUBLE LENGTH BINARY INTEGER

NOT USED

LNM 00 STRING LENGTH Bits 3-8 = 0.

STRING BYTE POINTER

0 1 2 9 3s

Determine the number of decimal digits required to convert the binary
integer, and if this number is greater than the string length given by AC+3
bits 9-35, go on to the next instruction without affecting the string space or
the accumulators in any way. 32 Note that the string length must specify a
minimum of one digit byte even if the binary number is zero, for to repre-
sent zero in decimal requires at least the digit “0” (a string with no bytes
cannot represent anything - not even zero). If the converted integer will fit
in the defined string space, continue as follows.

If the binary integer in AC,AC+l is not zero, set N, if it is less than
zero, set M (minus). If the number of digits required is less than the given
string length and L is 1, place the leading fill character from EO+l in the
excess positions at the left in the string space. This action causes the result
to be right justified. Clear AC+3 bits 9-35.

32 Caution: In the KLlO the N and M flags are set up first and may therefore be affected
even by an instruction that is aborted because the binary integer is too large.

User Operations 2-99

Compute each decimal digit for a positive representation of the magni-
tude of the binary integer (highest order first), and for each do one or the
other of the following two operations depending on which instruction is
being performed.

If the instruction is CVTBDO, add El to the computed digit algebrai-
cally (bit 18 is the sign).

If the instruction is CVTBDT, for the digit substitute a byte from the
right half of location E1+D in the translation table, where D is the
value of the digit, unless this is the last digit in the conversion, in which
case make the substitution from the right half of the location if M is 0,
but from the left half if M is 1.

Place each offset or translated byte in the next position in the string
space, compute the next digit, and continue as described above. When the
conversion is complete - all digits computed, offset or translated, and de-
posited - clear AC and AC+l, and skip the next instruction.

At the end the byte pointer points to the last byte deposited in the
string space, and AC, AC+l, and AC+3 bits 9-35 all contain zero. If unused
interior bits in the string are clear initially, they are left clear; otherwise
unused interior destination bits are indeterminate. The source string is
unaffected.

Notes. The translation table, which starts at EI, contains ten locations
for the decimal digits, each with substitute bytes in both half words, but the
left half is only for the final digit. This allows the program to use a different
final byte for a decimal string converted from a negative number. Note that
setting N is just to indicate that the number converted is not zero; the state
of the flag has no effect on the execution of the instruction.

--

CVTDBO Convert Decimal to Binary Offset

123 A I X Y I
0 89 I2 13 14 17 18 35

L-0 010 1 00 1/[x 1 Y Bits 9-12 = 0.

0 a 9 12 13 14 17 18 35

CVTDBT Convert Decimal to Binary Translated

r 123 A I X Y
I

0 89 II I3 14 I7 I8 35

L-0 011 00 I x Y Bits 9-12 = 0.

0 6 9 12 I3 I4 17 18 35

Convert a decimal string, offset or translated, to a double length binary
integer. A block of five accumulators is used for defining the decimal string
and receiving the binary result.

2-100 User Operations

AC

AC+1

AC+2

AC+3

AC+4

If

- STRING BYTE: POINTEK

- DOUBLE LENGTH BINARY RESULT

SNM 00 STRING LENGTH Bits 3--8 = 0.

0 I 2 Y 35

S is 1 initially there is already a binary number of significance in
AC+3,AC+4: use it as a base for further accumulation of the digits derived
from the decimal string. Otherwise begin with a zero base.

If the instruction is CVTDBO, set S to indicate the conversion has
started.

Beginning at the left, read each byte from the string, and for each do
one or the other of the following two operations depending on which in-
struction is being performed.

If the instruction is CVTDBO, add El to the byte algebraically (bit 18 is
the sign).

If the instruction is CVTDBT, carry out the corresponding translation
function given in the appropriate half word at location El + B/2 in the
translation table, where B is the value of the byte. Each word in the
table has this format.

TKANSLA I’ION t UNCTION tOR FVFN B TRANSLATION FIJNC‘TION t’0R Ol)l) R

01’

c‘OI)l DIGIT 1 OF c‘o11t: I)IC;IT Location El + B/2
0 2 I4 1718 20 32 35

Perform the function specified by the op code in the half word correspond-
ing to the byte as follows (setting S signals the start of significant digits in
the decimal string).

0 If S is 1 substitute the table digit for the byte. If S is 0 ignore this
byte and go on to the next.

1 Terminate the conversion.

2 Clear M, and if S is 1 substitute the table digit for the byte. If S is 0
ignore this byte and go on to the next.

3 Set M, and if S is 1 substitute the table digit for the byte. If S is 0
ignore this byte and go on to the next.

4 Set S and N, and substitute the table digit for the byte.

5 Set N and terminate the conversion.

6 Set S and N, clear M, and substitute the table digit for the byte.

7 Set S, N and M, and substitute the table digit for the byte.

If the translation function terminates the conversion, or the offset or
translated digit is greater than 9, put the number of bytes remaining in the
string in AC bits 9-35, put the partial binary result accumulated so far in
AC+3,AC+4, and go on to the next instruction. Otherwise multiply the
current binary value by 10 decimal, add in the current digit, and read the
next byte from the string to continue as described above until the conver-
sion is finished.

User Operations 2-101

CAUTION

It is up to the programmer to keep track of the size of the
decimal number - the hardware runs no test on the string. If
there are too many significant digits, the most significant
part of the binary is lost, and the processor gives no indica-
tion of it.

The conversion is regarded as complete only when all bytes of the
decimal string have been processed without causing a termination or gen-
erating a digit outside the range O-S. Upon completion negate the accumu-
lated binary if M is 1, place the result (negated or not) in AC + 3,AC +4,
and skip the next instruction.

At the end the byte pointer points to the last byte read from the deci-
mal string, and AC bits 9-35 contain the number of unprocessed bytes left
in the decimal string (if any). The string itself is unaffected.

The translation table starts at location EI, and since there are two
functions per word, it contains 2”-l locations, where n is the number of bits
in a byte. The address is generated by adding the left n - 1 bits of a byte to
El.

Notes. CVTDBO always sets S immediately, but in CVTDBT its setting
is controlled by the translation functions. Hence an instruction can skip
over leading fill characters or nonnumeric characters preceding the decimal
part of a string. If an interrupt or page failure occurs during this instruc-
tion, the number of bytes yet to be processed is put in AC bits 9-35, and the
partial binary accumulated so far is placed in AC + 3,AC + 4. Thus when the
instruction resumes after an interruption with S set, it simply continues
where the conversion left off, adding the next digit to ten times the binary
previously saved. If the programmer wishes to preset S to add the decimal
string to a significant binary base already in AC + 3,AC +4, he must be
aware that the base is multiplied by ten before the first digit is added.

For a decimal string a&de, the evaluation procedure is

(((a x 10 + b) x 10 + c) x 10 + d) x 10 + e

which is equivalent to

exl
+dxlO

+ c x 100
+ b x 1000

+ a x 10000

Of course the operations are all done in binary arithmetic.
Translation functions manipulate M, but the program can set it prior

to either instruction to indicate the decimal string represents a negative
number. N can also be preset or manipulated through the translation table,
but its state has no effect on the execution of the instruction.

--

2-102 User Operations

For decimal strings with 4-bit digits, conversion can be done by
CVTBDO or CVTDBO with a zero offset. But note that decimal bytes need
not be four bits: they can be larger using any decimal code provided only
that on conversion to binary they are in the range O-9 (o-1001 binary)
after offset or translation.

In ASCII numeric strings, the bytes representing the digits are 60-71
octal. Conversion to ASCII decimal would be by CVTBDO with offset 60 (48
decimal), and CVTDBO with offset -60 would convert in the opposite direc-
tion. Consider an ASCII string containing decimal numbers of various un-
known lengths separated by semicolons (ASCII code 73). The program could
convert all of these numbers to binary by specifying a constant, but suit-
ably large, string length while giving a sequence of CVTDBOs with offset
-60. Each conversion would terminate (nonskip) upon encountering a semi-
colon, as its offset value is 11 decimal. Between conversions the program
would have to store away the result and clear S by a sequence like this.

EXTEND AC,[CVTDBO O,-601
DMOVEM AC + 3,VALUEl
TLZ AC,700000
EXTEND ACJCVTDBO O,-601
DMOVEM AC + 3,VALUE2
TLZ AC,700000

Convert
Store result
;Reset SNM

If there were very many numbers, the program would naturally use only
one of the above sets of three instructions in a loop, along with some mecha-
nism to change the storage address and test whether to reiterate. The pro-
cedure cannot of course provide a negative result. If the same situation
were handled by translation, the table would not actually start at El - it
would run from El + 30 to El + 35.

User Operations 2-103

2.14 String Editing30

The edit instruction implements more complex operations on strings than
merely moving or translating, and before investigating it the reader should
be familiar with the general characteristics of strings (and cautions about
them) as presented at the beginning of 42.12. Edit provides the facilities
needed, particularly in COBOL and PL/I, to create formatted character
strings for output. Typical features are the ability to suppress leading zeros,
insert special symbols such as decimal points or currency symbols, and
recognize different types of numbers for operations like adding “CR” or
“DB” after them. When numbers appear in running text, leading zeros are
usually deleted; when they are lined up in columns (such as in a financial
statement), the practice is to substitute spaces.

Edit uses the usual source and destination byte pointers, but no string
lengths are given. Instead the source bytes are processed by commands in a
pattern command string, whose structure is determined by the expected
length of the source. The pattern commands are g-bit bytes packed four to
a word. They are executed according to a pattern pointer, which supplies
the address of a memory location and a 2-bit byte number, wherein the
numbers O-3 identify the bytes from left to right in the word. The destina-
tion string space is assumed to be large enough for whatever string edit
creates.

Available to the procedure are a translation -table at El like that of
MOVST, and a message insertion table following EO. EO + 1 contains the
fill character - typically a space - for suppression of leading zeros; but if
the whole word containing the fill character is zero, the fill is not inserted
in the destination space, thus deleting leading zeros. EO + 2 contains a float
character - typically a currency symbol or plus sign - which, if the word
containing it is nonzero, is inserted before the first significant byte. The
table can extend to EO + 100, thus supplying an additional sixty-two char-
acters for insertion in the string being generated. Insert characters are
typically decimal point, comma, “C” and “R”, and so forth.

For signaling significance AC has an S bit, which can be set from the
translation table when significance starts. At this point the destination
string position is marked by storing the current value of the destination
pointer at a location specified by a mark address. This provides a record of
where significance started, so the instruction can go back to make revisions
if need be after receiving more information from the source.

EDIT is a two-word instruction, where the first has the EXTEND code
123, and it uses a block of six accumulators. The description is accompanied
by a flowchart.

2-104 User Operations

EDIT Edit String

I 123 A I X Y 1
0 89 I2 I.3 14 17 I8 35

004 I 00 111 x I
r
I

Ill.l.

9 I-I OA 1

0 8 9 I2 I.3 I4 I7 I8 .3 5

Execute the commands in the pattern string to edit a source string, employ-
ing byte substitutions from a translation table at EI and inserting charac-
ters from a message insertion table at EO + 1, and place the result in the
destination string space. Source, destination and pattern are defined by the
contents of a block of six accumulators.

AC

AC+1

AC+2

AC+3

AC+4

AC+5

PATTERNBYTENUMBER
I

SNMO 1 PATTERNSTRINGADDRESS

1
- SOURCESTRlNGBYTEPOINTER

00 MARKADDRESS Bits O-5 = 0.

- DESTINATION STRING BYTE POINTER

0 I2 4 5 6 35

Definitions: Initially the pattern pointer, which comprises the pattern
string address and byte number, points to the first pattern command. Pat-
tern byte counting is effected by incrementing the byte number unless it is
3, in which case it is changed to 0 and the address is incremented. The
address is limited to bits 18-35 if the program is running in section 0. The
mark address is simply the address of the first in a pair of locations for
receiving the destination byte pointer as a mark. Of course if the destina-
tion pointer is local, only one location is used to store it. Furthermore if the
program is running in section 0, the mark address is limited to bits 18-35
and always points to a single location. In the following any reference to
reading a source byte shall be taken to mean that the source string byte
pointer is incremented first, and any reference to placing a character in the
next position in the destination string space shall be taken to mean the
destination byte pointer is incremented first.

Execute the pattern command specified by the pattern pointer. At the
completion of any pattern command, unless the edit has been ended by a
STOP command or a terminating translation function, increment the pat-
tern pointer and execute the pattern command then specified by it. There
are ten such commands as follows (all other command bytes are reserved
and must not be used).

Bits 9 I3 = 0.

Bit 3 = 0.

User Operations 2-105

SELECT I 001 Select Next Source Byte
0 8

Read the next byte from the source string, and carry out the corresponding
translation function given in the appropriate half word at location
El + B/2 in the translation table, where B is the value of the source byte.
Each word in the table has this format.

TRANSLATION FUNCTION FOR EVEN B TRANSLATION FUNCTION FOR ODD B

C%E 0 SUBSTITUTE FOR BYTE SUBSTITUTE FOR BYTE
(MAXIMUM 12 BITS) C%E 0 (MAXIMUM 12 BITS) Location El + B/2

0 2 6 17 18 20 24 35

Perform the function specified by the op code in the half word correspond-
ing to the source byte as follows.

If S is 1 place the substitute in the next position in the destination
string space. Otherwise if location EO + 1 is nonzero, place the fill
character from it in the next destination position.

Increment the pattern pointer, and go on to the next instruction.

Clear it4 and then perform function 0.

Set M and then perform function 0.

Set N. If S is 1 place the substitute in the next position in the desti-
nation string space. Otherwise do the following: set S; put the cur-
rent value of the destination byte pointer at the location specified by
the mark address; if location EO + 2 is nonzero, put the float charac-
ter from it in the next destination position; then place the substitute
in the next destination position after that.

Set N, increment the pattern pointer, and go on to the next instruc-
tion.

Clear M and then perform function 4.

Set M and then perform function 4.

Notes. The translation table starts at location El, and since there are
two functions per word, it contains 2”’ locations, where n is the number of
bits in a byte. The address is generated by adding the left n - 1 bits of a
byte to El.

SIGST I 002 Start Significance
0 8

If S is 0 do the following: set S; put the current value of the destination
pointer at the location specified by the mark address; and if location EO + 2
is nonzero, put the float character from it in the next destination position.

Notes. A typical use of this command might be before a final character
to guarantee that zero is represented by one “0.” Or if the number of cents
is 00004, to put in a decimal point and generate a result of .04.

-

2-106 User Operations

MESSAG + n 1 n Insert Message Character
0 2 3 8

If S is 1 place the character from EO + n + 1 in the next destination position.
Otherwise if location EO+ 1 is nonzero, place the fill character from it in
the next destination position.

FLDSEP 11 Separate Fields
0 8

Clear S, M and N.
Notes. Essentially this instruction causes the procedure to start over on

a new substring. A typical use would be in handling a series of numbers
(separated by some character), where one would want to suppress leading
zeros in all of them.

EXCHMD I 004 Exchange Mark and Destination Pointers
0 8

Interchange the destination pointer presently held in AC +4,AC + 5 with
the mark pointer at the location specified by the mark address.

Notes. This makes it possible to go back to where significance began in
order to revise the destination string in light of further processing of the
source, but at the same time saving the present position. A return forward
can be made simply by repeating the instruction.

Note that it is unlikely to be very useful for the programmer to set up
an initial mark pointer. In any normal procedure a mark is created from
the destination pointer and is simply a particular state of it. Hence the
destination and mark pointers have the same number of words. The result
is indeterminate if the programmer deliberately sets up mark and destina-
tion pointers of different types.

SKPM + n [] Skip on M
0 2 3 8

If M is 1 skip over the next n + 1 pattern commands by incrementing the
pattern pointer n + 1 times.

Notes. M is generally used as a minus sign, i.e. to indicate a string is
negative, but the programmer can use it for any purpose. A typical use
would be to determine whether ‘CR” or “DB” should be inserted after a
number.

SKPN + n 1611 Skip on N
0 2 3 8

If N is 1 skip over the next n + 1 pattern commands by incrementing the
pattern pointer n + 1 times.

User Operations Z-107

Notes. N is generally set to mean the string is nonzero, but the pro-
grammer can use it for any purpose. Suppose we wish to output a blank on
zero, but use of SIGST to handle cents-only quantities has produced “.OO”.
We could use SKPN after the last source byte, so that if the output is
nonzero we would skip over commands that would otherwise go back and
blank the output.

SKPA + n 7 1 I1 Skip Always
0 2 3 8

Skip over the next n + 1 pattern commands by incrementing the pattern
pointer n + 1 times.

Notes. This command is used mostly to reverse the meaning of the
other skips. For example, the sequence “SKPN,X” skips command X if N is
1, but the sequence “SKPN,SKPA,X” executes it if N is 1. SKPA can also be
used to extend a conditional skip beyond sixty-four commands, as in

SKPN + 77 ,... 63 bytes... ,SKPA,SKPA + 3,. . .4 bytes.. . ,X

in which N being 1 causes a skip over sixty-seven significant commands to
get to X.

NOP 005 No-op
0 II

Do nothing.

STOP I 000] Stop Edit
0 8

Increment the pattern pointer, end the edit, and skip the next instruction.

At the end the byte pointers point to the last positions referenced in
source and destination, and the pattern pointer points to the command byte
following the last one executed. Note 1 owever that if the pattern gives an
EXCHMD after the final byte is placed ;n the destination string, the “desti-
nation pointer” is actually at the mark location rather than in
AC +4,AC + 5. If unused interior bits n both strings are clear initially,
they are left clear; otherwise unused in ,erior destination bits are indeter-
minate. The source string is unaffected.

Notes. If an interrupt or page failurt occurs during EDIT, the accumu-
lators are adjusted for restarting at the beginning of the current pattern
command.

-

-

2-108 User Operations

Figure 2.2: Edit Instruction

RETRIEVE &

DECODE (PPI l

SELECT

001

SIGST

002

MESSAG

lxx

O+S.M,N DP+‘(MAI
PPtl +PP P PC+1 -tPC

0

* v
DP+l - DP

IEO+XX+llD - IDPj 0 END

A- I h- F

4 6 7 5 1

4
I I

l+N Q I

PP+l +PP

l-‘S

DP + IMA)

PP

SP

MA

DP

D

T

TOP

TD
xx

PATTERN POINTER IN AC

SOURCE POINTER IN AC+l,AC+Z

MARK ADDRESS IN AC+3

DESTINATION POINTER IN AC+4,ACt5

NUMBER OF BITS AT THE RIGHT EQUAL

TO THE SIZE OF A DESTINATION BYTE

(USED AS SUBSCRIPT)

TRANSLATION FUNCTION

(El+ISP)/ZJL IF (SPJ EVEN

(El+[W-lI/Z)R IF (SPI ODD

OP CODE PART OF T (LEFT 3 BITS)

DATA PART OF T (RIGHT D BITS)

RIGHT 6 BITS OF PATTERN BYTE

\

DPtl + DP

EDIT MR.0630

-

Example. The following program uses binary-to-decimal conversion
and editing to translate a binary number into a message of seventeen char-
acters containing a decimal string with appropriate nomenclature for com-
mercial billing purposes. A positive result has the form

$12,345.46 DUE US

whereas a negative result has the form

$12,345.46 CREDIT

but if the number is zero, the entire field is blank (all spaces). The maxi-
mum number the routine can handle is $99,999.99.

This program employs seven accumulators, of which P is for the stack
pointer, and a block of six, labeled ACl-AC6, is for the extend instructions.
In the block however, AC3 and AC6 are never actually used as the program
is entirely local, employing only one-word stack and byte pointers. Begin-
ning at TEMP and FIELD,are blocks of eight locations set aside for the edit
source and destination strings. The routine is called by a PUSHJ to
PNTFLD with the amount as a binary number of cents in ACl,AC2. It
returns the result beginning at the left in FIELD.

PNTFLD: MOVE AC4,[400000,,71 Convert up to 7 digits with leading fill
MOVE AC5,lPOINT 7,TEMPl Store decimal in edit source area
EXTEND ACl,[CVTBDO 60 Convert to decimal with leading zeros

JRST

MOVE1
TLNE
TLO
MOVE

MOVE1

MOVE
EXTEND

HALT
POPJ

601
ERROR ;Here if need too many digits (binary too large)

ACl,PATTRN Set pattern pointer to first command
AC4,lOOOOO ;Copy M flag from AC4 (CVTBDO result)
ACl,lOOOOO ; toAC1
ACB,[POINT 7,TEMPl ;Pointer for source string

; (CVTBDO result)
AC4,MARK ;Address of mark pointer

AC5,lPOINT 7,FIELDl ;Pointer for destination string
ACl,EDTINS ;Edit the item

P,O
Should never get here
;Return

;Here is the edit instruction
EDTINS: EDIT TABLE-30 ;Need only digit part of translation table

?? 7, ;Fill character is space

Y’ ;Float character is dollar sign
(? ,,

7 ;Message 2 is comma
(? 9,
,,D,,

;Message 3 is decimal point

“U’
“E”
“S”
“C”
“R’
?(9, I
“T”

User Operations 27111

;Here is the translation table. Digits l-9 set S and N flags; 0 does not affect the flags
TABLE: 60,,400061

400062,,400063
400064,,400065
400066,,400067
400070,,400071

;Here is the pattern
PATTRN: 001001,,102001

001001,,002103

001001,,100506

104105,,106100
105107,,705110
111106,,104112
113613,,004100
100100,,100100
100100,,100100
100100,,0

MARK: BLOCK 1
TEMP: BLOCK 10
FIELD: BLOCK 10

SELECT SELECT MESSAG + 2 SELECT
; 2 digits, comma, digit
SELECT SELECT SIGST MESSAG + 3
; 2 more digits, then start significance and insert
; a decimal point
;SELECT SELECT MESSAG + 0 SKPM + 6
; 2 more digits (cents) and a space, then skip
; next 7 commands if number was negative
;Append the message “DUE US”
; Then skip 6 pattern commands
;Append the message “CREDIT”
;If number is nonzero skip 12 commands
; Else exchange mark and destination pointers
; and blank out result
;Then stop

2.15 Programming Examples

Before continuing to more system-related subjects, let us consider some
simple programs that demonstrate the use of a variety of the instructions
described thus far.

Processor Identification

The instruction repertoires of all PDP-10 processors and the 166 processor
used in the PDP-6 are very similar, and most programs require no changes
to run on any of them. Because of minor differences and the fact that some
instructions are not available on the earlier machines, a program that is to
be compatible with all should have some way of distinguishing which ma-
chine it is running on. This simple test suffices.

JFCL 17,. + 1 Clear flags
JRST .+l ;Change PC
JFCL 1 ,PDPG ;PDP-6 has PC Change flag
MOVNI AC,1 ;Others do not, make AC all 1s
AOBJN AC,. + 1 ;Increment both halves
JUMPN AC,KAlO ;KAlO if AC = 1000000 (carry
BLT AC,0 ;between halves)
JUMPE AC,KIlO ;KIlO if AC = 0

-

-

-

2-112 User Operations

Parity

MOVE1 AC,1 ;KLlO or KS10 if AC = l,,l
SETZ AC+l, ;Big binary integer
MOVE1 AC+3,1 ;One digit byte
EXTEND AC,[CVTBDO] ;Convert will abort
TLNE AC + 3,200OOO ;Test effect on N
JRST KLlO ;KLlO if N set
JRST KS10 ;KSlO if N unaffected

Parity procedures are used regularly to check the accuracy of stored infor-
mation. Parity generation and checking is generally handled automatically
by memory and high speed, block-oriented peripheral devices, but must be
handled by the program for character-oriented devices. Consider &bit char-
acters, for which the program carries out two procedures: for output it
generates a parity bit from seven data bits to produce an &bit character
with parity; following input it checks the parity of the eight bits received.
In either case however, the program can simply find the parity of an S-bit
character, by regarding the seven output data bits as eight including an
irrelevant extra bit. The two procedures then differ only in the final action.
In the first case the program uses the result to adjust the eighth bit for
correct parity, whereas in the second it checks the result for an indication
of error.

Assuming the character is right justified in accumulator A and the rest
of A is clear, as it would be were the character placed in A by a load-byte
instruction or a DATAI, the simplest and quickest procedure would be to
use A to index an XCT into a table, each of whose locations contains an
instruction that adjusts the parity for output or jumps to a routine for
erroneous input. This procedure would normally be unacceptable because of
the very large memory requirements. However the table can be reduced to
sixteen entries without excessive loss in speed, by exclusive oring the left
and right halves of the character and indexing on the result (parity is
invariant under the exclusive OR function, which essentially disposes of
pairs of 1s). This example, which uses a second accumulator T for character
manipulation, requires six memory references to generate odd parity.
(Numbers of memory references and locations given do not include those for
the POPJ, which we will regard as subroutine overhead. Similarly every
example also requires that the program give a PUSHJ to get to the
subroutine.)

PARITY: MOVE1 T,(A) ;Copy character in T
LSH Tp-4 ;Line up halves
XORI T,(A) ;Reduce paritywise to 4 bits
AND1 T,17 ;Wipe out unwanted bits
XCT PARTAB ;Execute indicated table item
POPJ P,

User Operations 2-113

PARTAB: XORI
JFCL
JFCL
XORI
JFCL
XORI
XORI
JFCL
JFCL
XORI
XORI
JFCL
XORI
JFCL
JFCL
XORI

A,200

A,200

A,200
A,200

A,200
A,200

A,200

A,200

;O - change high bit
;l - no-op

;2
;3
;4
;5
;6
;7
;lO
;ll
$2
;13
$4
$5
;16
$7

To handle even parity, interchange the JFCLs and XORIs in the table, or
change the MOVE1 T,(A) to MOVE1 T,200(A).

The next example does exactly the same thing but substitutes a little
more computation for use of a table. In other words it takes a little more
time (7% memory references average) but less than half the memory.

PARITY: MOVE1 T,200(A)
LSH T,-4
XORI T,(A)
TRCE T,14
TRNN T,14
XORI A,200
TRCE T,3
TRNN T,3
XORI A,200
POPJ P,

Copy character with high bit
;complemented, then fold copy into 4
;bits with opposite parity
;Are left two both O?
;Or both l?
;Yes, change high bit
;Are right two both O?
;Or both l?
;Yes, change for even, restore for odd

Note that this example does not require the rest of A to be clear. For even
parity change the address in the MOVE1 from 200 to 0.

Finally let us consider the extreme of substituting computation for
memory. Starting with the character abcdefgh right justified in A, we first
copy it in T and then duplicate it twice to the left producing

abc def gha bed efg hub cde fgh

where the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent
the result by

cfadgbeh

-

-

2-114 User Operations

where each letter represents an octal digit having the same value (0 or 1) as
the bit originally represented by the same letter. Multiplying this by
11111111, generates the following partial products:

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

cfadgbeh
cfadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the
parity of the character, 0 if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence:

PARITY: MOVE1 T,(A) Copy in T
IMULI T,200401 ;Duplicate twice
AND T,ONES ;Pick LSBs
IMUL T,ONES ;Generate product
TLNN T,lO ;Is bit 14 odd?
XORI A,200 ;No, change parity
POPJ P,

ONES: 11111111

This procedure uses a minimum of both memory references and memory
space, but takes considerably more time because the instructions them-
selves are slow.

The following table shows the trade-off of memory references against
memory space for the above four procedures. The time is proportional to the
number of references except in case 4.

1.
2.
3.
4.

References Locations

2 257
6 21
7% 9
7% 7

User Operations 2-115

Reversing Order of Digits

Suppose we wish to reverse the order of the digits in the 6-bit character
abcdef, where the letters represent the bits of the character. We first dupli-
cate it three times to the left and shift the result left one place producing

a bed efa bed efa bed efa bed ef 0

where the bits are grouped corresponding to the octal digits in the word.
Anding this with

1 000 100 100 010 010 000 001 000

gives

a 000 eO0 bO0 Of0 OcO 000 OOd 000

Now it just so happens this number is configured such that the residues of
the values of its bits modulo 28 - 1 are in exactly the opposite order from
the bits of the original character and have the binary orders of magnitude
O-5. In other words this number is equal to the sum of the numbers in the
upper row below, and dividing each of these summands by 255 gives the
remainder listed in the lower row.

Dividend

Remainder

fX2’3 e X 220 dX23 cX2’0 bX217 a X 224

fX25 e X 24 dX23 cx22 bX2’ aX2O

The remainder in a division is equal to the sum, modulo the divisor, of the
remainders left by dividing each of the dividend summands by the same
divisor. And the sum of the terms in the lower row is obviously fedcba. The
above procedure is implemented by this sequence (due to SchroeppeP4)
where the character is right justified in accumulator A (with the rest of A
clear), and its reverse appears right justified in accumulator A + 1.

IMUL A,[20202021 ;4 copies shifted left one
AND A,[104422010] ;Pick bits for reverse
IDIVI A,3777 ;Divide by 28 - 1

To reverse eight bits we can use a similar procedure (also due to
Schroeppel) where again the original character is right justified in A and
its reverse appears right justified in A + 1. But this time we cannot manage
the manipulation within a single length word, so we must use multiply,
divide, and a pair of ANDs.

MUL A,[1002004010021 ;5 copies in A and A + 1
AND A + 1,[204204200201 ;Pick bits for reverse via
AND1 A,41 ;residues mod 21° - 1
DIVI A,1777 ;Divide by 21° - 1

34 HAKMEM 140, page 78 (Artificial Intelligence Memorandum, No. 239, February 29,
1972, MIT Artificial Intelligence Laboratory).

-

.-

2-116 User Operations

Counting Ones

Suppose we wish to count the number of 1s in a word. We could of course
check every bit in the word. But there is a quicker way if we remember that
in any word and its twos complement the rightmost 1 is in the same posi-
tion, both words are all OS to the right of this 1, and no corresponding bits
are the same to the left (the parts of both words at the left of the rightmost
1 are complements). Hence using the negative of a word as a mask for the
word in a test instruction selects only the rightmost 1 for modification. The
example uses three accumulators: the word being tested (which is lost) is in
T, the count is kept
TEMP.

MOVE1
MOVN
TDZE
AOJA
,..

in CNT, and the mask created in each step is stored in

CNT,O
TEMP,T
T,TEMP
CNT,.-2

Clear CNT
;Make mask to select rightmost 1
Clear rightmost 1 in T
;Increase count and jump back
Skip to here if no 1s left in T

CNT is increased by one every time a 1 is deleted from T. After all 1s have
been removed, the TDZE skips.

The receding example uses little memory, but contains a loop so the
time it t ! kes is proportional to the number of 1s. The next example takes
more memory but is constant; hence it is slower than the above when there
are few 1s (less than eight), but is much faster when there are many. The
word, which is lost, is in accumulator A, and the answer appears in accu-
mulator k+ 1 (for convenience we let B = A+ 1). The routine (due to
Gosper, Mann and Leonard35) has three distinct parts and is based on the
fact that in a binary word, counting 1s is equivalent to calculating the sum
of the digits. The first part, of seven instructions, manipulates the octal
digits of the word so as to replace each digit by the number of Is in it.
Taking D as an octal digit and [xl as the largest integer contained in X, the
algorithm used to make the substitution is

D - [O/2] - [O/41

Of course the computer always acts in binary terms regardless of program-
mer interpretation. In this case the procedure carried out on each 3-bit
piece abc is

abc - ab - a

The instructions effect this algorithm by shifting a copy of the word right
one place, masking out the LSB of each shifted octal digit to prevent it from
interfering with the next digit at the right (i.e. to isolate the digits), and
subtracting the shifted word from the original. The same process is then
repeated, this time masking out what was originally the middle bit in each
digit. That this algorithm gives the correct substitution is evident from the
following table, in which it is seen that the bottom number in a given
column is the sum of the bits in the octal digit given at the top of the
column.

35 Ibid, item 169, page 79.

User Operations 2-117

Original digit 0 1 2 3 4 5 6 7
Subtract 0 0 1 1 2 2 3 3 _ - - - - - - -

0 1 1 2 2 3 3 4
Subtract 0 0 0 0 1 1 1 1 _ - - - - - - -

Numberofls 0 1 1 2 1 2 2 3

We have now replaced the original word with a set of twelve numbers,
whose sum is equal to the number of 1s in the original. The next three
instructions add together pairs of adjacent numbers so as to replace the
twelve by six whose sum is still the same. Since these new numbers are
isolated in 6-bit pieces of the word, we shall revise our point of view, and
regard them as digits in a number in base 64. Now any number is simply
the sum of the values of its digits, i.e., of its digits each multiplied by an
appropriate power of the base. Dividing each such summand by 1 less than
the base gives the digit itself as remainder. Hence the third part of the
routine just divides our 6-digit number by 63, producing in B a remainder
that is the sum of the remainders from the individual digits, i.e., that is the
sum of the digits.36

MOVE
LSH
AND
SUB
LSH
AND
SUBB
LSH
ADD
AND

B,A
B,-1
B,[333333,,3333331
A,B
B,-1
B,[333333,,3333331
A,B
B,-3

~&0707,,070707,

IDIVI A,77

Copy in B
;Right one

;Mask out LSBs
;D - [D/2]
;Right one again

;Mask out middle bits
;D - [D/21 - [D/41; two copies
Shift right one octal digit
;Add numbers in digit pairs

;Throw out extra pair sums

;Divide by 63, sum in B

If it is known that the 1s in the word are entirely contained within bits
22-35 (the right fourteen bits), we can use the following somewhat shorter
routine, which is faster than the loop for more than seven 1s. It first treats
the number in quaternary, replacing each digit with the number of 1s in it,
and then converts from quaternary to hexadecimal.

MOVE1 B,(A)
LSH B,-1
AND1 B,12525
SUBB A,B

;Mask out LSBs
;D - [D/21; two copies

36 In general terms this is the statement that the sum S of the digits in any number N in
base b mod (b - 1) -provided b is deliberately chosen such that S < b - 1. The condition
holds here of course as the number of 1s in a PDP-10 word is at most 36. And it is in fact
to make this condition hold that the routine converts from base 8 to base 64.

-

2-118 User Operations

LSH B,-2 ;Right one quaternary digit
AND1 A,31463 ;Mask out some of digits in A
AND1 B,31463 ;The rest in B
ADD1 A,(B) ;Now combine digit pairs

IDIVI A,17 ;Divide by 15, sum in B

Note that the pair of ANDIs gets rid of one out of each set of two identical
bit pairs before adding. This is done because there can be digit overflow, i.e.
a resulting hexadecimal digit can have more than two significant bits.

Number Conversion

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

N/b = q1 + Mb
q/b = qz + r/b
qz/b = q3 + r3/b

rl < b

r2 < b

r, < b

q,_,/b = 0 + r,/b r,, < b

The number in base b is then rr.r.r,. For example, the octal equivalent of
61 decimal is 75:

61/B = 7 + 5/B

7/B = 0 + 7/B

The following decimal print routine converts a 36-bit positive integer
in accumulator T to decimal and types it out. The contents of T and T + 1
are destroyed. The routine is called by a PUSHJ P,DECPNT where P is the
stack pointer.

DECPNT: IDIVI T,lZ $2, = lo,0
PUSH P,T+ 1 Save remainder
SKIPE T ;A11 digits formed?
PUSHJ P,DECPNT ;No, compute next one

DECPNl: POP P,T ;Yes, take out in opposite order
ADD1 T,60 ;Convert to ASCII (60 is code for 0)
JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPNl until all digits are typed, then to the calling program.

In section 0 space can be saved in the stack by storing the computed
digits in the left halves of the locations that contain the jump addresses.
This is accomplished in the decimal print routine by changing

PUSH P,T+ 1 to HRLM T+ l,(P)

User Operations 2-119

and

POP P,T to HLRZ T,(P)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is re-
placed by

LSHC T,-^D35
LSH T+ 1,-l
DIVI T,12

;Shift right 35 bits into T + 1
;Vacate the T + 1 sign bit
;Divide double length integer by 10

Table Searching

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T con-
tains the item. The right half of A is used to index through the table, while
the left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,-N ;Put -N,,O in A
CAMN T,TAB(A) Skip if current item not the one
JRST FOUND ;Item found
AOBJN A,.-2 ;Try next item until left count = 0
. . . ;Item not in list

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different proce-
dure would be

MOVSI A,-N
CAME T,TAB(A) Skip if current item is the one
AOBJN A,.-1
JUMPL A,FOUND ;Jump if left count < 0
. . . ;Item not found

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of accu-
mulator T. At the end the final item is in T right.

FIND:
MOVE T,(T)
TRNE T,-1
JRST
HLRZS 6

2

;Move next item to T
Skip if AC right = 0; -1 = 777777

;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVE1 CNT,O ;Clear CNT
JUMPE T,OUT ;Jump out if T contains 0
HRRZ T,(T) ;Get next address
AOJA CNT,.-2 Count and go back

-

2-120 User Operations

Extended Addressing

For simplicity the preceding examples have employed only local address-
ing, as this is mostly what a typical program would use even when running
in a nonzero section. Here we give a number of straightforward examples to
show the differences between local and extended addressing, with and with-
out indexing and indirection. In all cases the program is assumed to be
running in section 22.

Local reference without indexing or indirection.

MOVE T,lOOO

loads accumulator T with the contents of location 1000 in section 22.
Local indexing.

MOVFI x,100
MOVE T,lOOO(X)

loads T with the contents of location 1100 in section 22. This would typi-
cally be the hundredth entry in an array starting at 1000 in the current
section.

MOVNI x,100
LOOP: ADD T, 1000(X)

AOJL X,LOOP

adds together the contents of locations 700-777 in section 22. (We assume
that either T is cleared first or the array is added to whatever is in it
initially.)

MOVSI X,-LENGTH
LOOP: ADD T,lOOO(X)

AOBJN X,LOOP

adds together the contents of all locations in an array of length LENGTH
starting at location 1000 in section 22. Note that since local indexing is
used, the array cannot cross over into section 23. If LENGTH is greater
than 776777 the array wraps around, first into the AC block, and then
continuing from location 20 in the current section.

Global indexing.

MOVE x,[30,,1000]
ADD T,lOO(X)

adds the contents of location 1100 in section 30 to T. Note that if the literal
were “22,,1000” the ADD would address location 1100 in the current sec-
tion even though the indexing is global.

MOVE x,[30,,1000]
ADD T,-100(X)

adds the contents of location 700 in section 30. Were the address part of the
ADD instruction -1000, it would reference storage location 0 in section 30

User Operations !z-121

(not a fast memory location). Furthermore were the address part -2000, it
would address location 777000 in section 27, as global indexing can cross
the section boundary.

Local indirection.

MOVE1 Tl,lOO
MOVEM Tl,lOOO
ADD T,@lOOO

adds the contents of location 100 in section 22 to T.
Global indirection.

MOVE T,@[30,,10001

loads T with the contents of location 1000 in section 30. If location 1000 in
section 30 contained

MOVE T,2000

then in the current section (22) the instruction

XCT @[30,,10001

would load T with the contents of location 2000 in section 30, as the instruc-
tion is executed in that section rather than in 22. On the other hand, were
location 1000 in section 30 to contain

JSR SUBR

then an

XCT @~30,,10001

given in location 100 in section 22 would transfer control to SUBR + 1 in
section 30, but the PC saved in 30,,SUBR would be 22,,101 as the XCT
itself is performed in the current PC section, which is 22.

Global indirection with indexing.

MOVE1 x,100
MOVE T,@[GIW 30,1000(X)]

loads T with the contents of location 1100 in section 30. The made-up pseu-
doinstruction GIW would create a global indirect word by causing the as-
sembler to place the number X in bits 2-5 of the word in which it places
30,,1000 in bits 6-35. There is no such operation, but the programmer could
define a macro for this purpose.

MOVE x,[2000000-11 ;2 sections worth
LOOP: ADD T,@[GIW 30,1000(X)]

SOJGE X,LOOP

adds up the 512K array from location 777 in section 32 down to 1000 in
section 30. Note that even if the array contained fewer than 217 words and

d

-

2-122 User Operations

did not cross a section boundary, it would still not be possible to use
AOBJN for the loop, as global indexing uses the entire index register. The
following gets the same result with negative indexing.

MOVE x,[-2000000 + 11
LOOP: ADD T,@[GIW 32,777(X)1

AOJLE X,LOOP

2.16 Unimplemented Operations

Codes not assigned as specific instructions act as unimplemented opera-
tions, wherein the word given as an instruction is trapped, either because it
should not be given or because it must be interpreted by a routine included
for this purpose by the programmer. Those that are available for interpre-
tive use are unimplemented user operations, or UUOs (the several
mnemonics mentioned in this discussion are for convenience and mean
nothing to the assembler). Codes in the range 001-037 are for the local use
(LUUOs) of the user anywhere or the Monitor in section 0. Various other
codes are set aside specifically for user communication with the Monitor or
for communication between one level of the Monitor and another; in either
case these MUUOs are interpreted by the executive. Basic codes (except
000) that are not used for instructions or UUOs, and extended codes not
used by EXTEND, are regarded as the “unassigned codes”; 000 is not re-
garded as a legal code at all. Let us consider first how an LUUO works.

Local Unimplemented User Operation

001-037 n / x Y

0 8’) I2 13 14 17 IX 35

If the program is running in section 0, store the instruction code, A and the
effective address E in bits O-8, 9-12 and 18-35 respectively of location 40;
clear bits 13-17. Execute the instruction contained in location 41. The orig-
inal contents of location 40 are lost. Every LUUO in section 0 uses some
pair of locations numbered 40 and 41, but which such pair depends upon
the circumstances. An LUUO in a user program uses virtual locations 40
and 41 and is thus entirely a part of and under control of the user program.
The locations used in executive mode depend on the processor:

KL10,KSlO 40 and 41 in executive virtual space

KIlO 40 and 41 in the executive process table

KAlO Unrelocated 40 and 4137

37 If a single memory serves as memory number 0 for two KAlO processors, the second (with
the trap offset) uses unrelocated 140-141 and 160-161 respectively for each instance in
which 40-41 and 60-61 are given here. The offset does not apply to user LUUOs as it is
assumed the Monitor would relocate these to different physical blocks.

User Operations 2-123

If the program is running in a nonzero section, take one of these two
courses of action.

In executive mode perform an MUUO - not because the code is illegal,
but because it is actually unassigned rather than an LUUO.

In user mode perform the following operations using a block of four
locations beginning at that specified by bits 6-35 of location 420 in the
user process table. In the first two locations save the program flags and
PC in a flag-PC doubleword; in the rest of the flag word clear bits 13-17
and 31-35, and store the instruction code and A in bits 18-26 and
27-30. In the third location store E in bits 6-35 (clear bits O-5).

FLAGS 00 CODE A 00

00 PC

00 E
L

3 00 NEW PC

0 5 6 1213 1718 26 27 30 31 35

Then load bits 6-35 of the fourth location into PC, and continue performing
instructions in normal sequence beginning at the location then addressed
by PC. If E is a local AC address, store it in global form (i.e. with a section
number of 1).

MUUOs

The actions of MUUOs depend to a considerable degree on the processor,
and also on which Monitor is in use. These are the MUUO codes.

TOPS-20 104;040-051, 055-077 in section 0

TOPS-10 except KAlO 040-051, 055-077

KAlO 040-051, 055-100

MUUOs have considerable flexibility in the way they can alter the opera-
ting characteristics of the machine (mode, section). But the information
that governs the alterations is contained in the user process table, and is
therefore assumed to be under sole control of the kernel program.

The unassigned codes, which are listed in Appendix E, are not
MUUOs, but the processor reacts to them in the same way in order to turn
control over to the Monitor. (In the KAlO there are minor differences as
explained below.) The processor also takes the same action if the program
gives a JRST with an undefined function, an instruction that is illegal
because of the context in which it is given, an extended instruction with
incorrectly formatted accumulators, or code 000. The last is so that control
returns to the Monitor should a user program wipe itself out or inadver-
tently attempt to execute a location that has been cleared.

2-124 User Operations

The rest of this section is devoted to the different ways in which
MUUOs are performed. Except in the KAlO, all types use locations in the
user process table to store similar information. Figure 2-3 shows what
information is stored in which locations for each processor type.

Extended KLlO MUUOs. In locations 424-426 of the user process
table, store the same information (as specified above) that is stored in the
first three locations of an LUUO block by an LUUO given in a nonzero
section, except that when the MUUO is given in executive mode, also save
the previous context section in bits 31-35 of location 424. Store the “process
context word)P in location 427; this word saves information that partially
defines the context in which the MUUO is given, and is exactly the infor-
mation read by a DATA1 PAG, ($3.5). Complete the specification of the
MUUO context by setting up the previous context flags, and clear the rest
of the flags to place the processor in kernel mode. Then load PC from bits
6-35 of the appropriate location in a PC list, and continue performing in-
structions in normal sequence beginning at the location then addressed by
PC. (Note that the MUUO can change PC from any section to any other.)
The new PC can be taken from among the eight locations in the user pro-
cess table listed here depending upon the mode at the time the MUUO is
given, and whether or not it is executed as the result of an overflow trap.

Mode Execution Location

Kernel
Kernel
Supervisor
Supervisor
Concealed
Concealed
Public
Public

No trap 430
Trap 431
No trap 432
Trap 433
No trap 434
Trap 435
No trap 436
Trap 437

Single-section KLlO MUUOs. With either the TOPS-20 or
TOPS-10 Monitor, MUUOs store the same information and take the same
action, but they use a different set of three locations in the user process
table. In the first location store the instruction code, A and the effective
address E in bits O-8, 9-12 and 13-35 respectively, and clear bits 13-17
(this is the same information as that stored by an LUUO given in section
0); save the flags and PC in a PC word in the second location; and save the
process context word in the third location. Then set up the flags and PC
according to the contents of the appropriate location in a PC word list, and
continue performing instructions in normal sequence beginning at the loca-
tion then addressed by PC. The PC word list occupies the same area as the
PC list for an extended KLlO, and it is organized and used (with respect to
mode and trap) in the same way.

There are no restrictions on the manner in which the new PC word of
an MUUO can set up the flags. It can switch the processor from any mode
to any other.

User Operations

Figure 2.3: User Process Table MUUO Configurations

424

425

426

427
0 56 12 I3 17 10 26 27 30 31 35

EXTENDED KLlO OR TOPS-20 KS10

425

426

427
0 8 9 I2 1.1 17 In 35

SINGLE SECTION KLlO WITH TOPS-20

424 CODE 1 A 00 E

425 FLAGS 00 PC

426 PROCESS CONTEXT WORD

0 8 v 12 I3 I7 I8 JS

SINGLE SECTION KLlO OR KS10 WITH TOPS-10

424 1 CODE 1 A 1 00 1 E 1

425 FLAGS
I 00 I PC 1

0 u v I2 I3 I7 I8 3s

KIlO

KS10 MUUOs. For the KS10 the PC or PC-word list contains only four
entries for executive and user modes, in the locations corresponding to the
kernel and concealed modes as given above - the supervisor and public
locations are not used. The process context word for the KS10 is that read
by an RDUBR ($4.5). Otherwise, with TOPS-20 an MUUO is performed in
the same way as in an extended KLlO, and with TOPS-10 it is performed
in the same way as in a single-section KLlO running under TOPS-lo.

KIlO MUUOs. An MUUO is performed in exactly the same way as on
a single-section KLlO with the TOPS-10 Monitor, except that it does not
store a process context word (only two words of information are stored in
locations 424 and 425). Note that the trap locations in the PC-word table
are used for either overflow or a page failure.

2-126 User Operations June 1982

KAlO MUUOs. MUUOs and unassigned codes,38 regardless of mode,
perform exactly the operations given above for an LUUO with the excep-
tion that MUUOs use unrelocated 40-41 and unassigned codes use unrelo-
cated 60-61 (140-141 and 160-161 for a second processor). Note that in
executive mode, LUUOs and MUUOs act identically.

The important point is that an MUUO or unassigned code results in
executing an instruction in an unrelocated location, i.e. an instruction un-
der the control of the Monitor. This would most likely be a jump that leaves
user mode, saves the PC word and enters a routine to interpret the MUUO
configuration. In the instruction descriptions, any reference to events re-
sulting from execution by an MUUO should be taken to include the unas-
signed and illegal codes as well.

2.17 KS1 0 Input-Output Instructions

Unlike earlier processors, the KS10 has no special format for IO instruc-
tions. Instead they are simply those instructions that handle the peripheral
equipment, the console and memory status - although for consistency,
they do have 1s in the left three bits. KS10 IO instructions are oriented
toward Unibus-type devices, as all peripheral equipment in a
DECSYSTEM-2020 is handled through Unibus adapters. There are twelve
of these instructions, six each for manipulating full words and bytes, de-
scribed here in terms of their general effects for handling external devices.
Information about external devices - individual instruction descriptions,
IO addresses, etc. - is given in the device documentation (however memory
status is defined in §4.8).

NOTE

Ordinarily the user has no use whatever for the instructions
described in this section. In almost all cases, input and out-
put is handled by the Monitor in response to user requests
employing MUUOs and various software formats. For infor-
mation on user procedures vis-a-vis Monitor handling of user
IO requirements, the reader should refer to the appropriate
Monitor Calls manual.

Programmers who do handle their own input-output
should note that the instructions described here are in-out
instructions, which are affected by the timeshare instruction
restrictions. Namely an instruction of this type cannot be
performed by a user program unless User In-out is set. Any
in-out instruction that violates this restriction does not per-
form the functions given for it in the instruction description.
Instead it executes as an MUUO.

s8 Codes 247 and 257, although not assigned as specific instructions, are nonetheless not
regarded as “unassigned” codes. They execute as no-ops unless implemented by special
hardware.

User Operations 2-127

The system instructions discussed in Chapters 3 and 5
for the other processors are also IO instructions. System in-
structions for the KS10 are not IO, but for consistency and
convenience they are subject to the same restriction as IO
instructions (determination of their legality is done by the
same microcode test). This restriction will not be mentioned
in the instruction descriptions, as it applies to all instruc-
tions from this point on.

As in all instructions the processor does an effective address calcula-
tion, but for the IO instructions it ignores the result and recomputes an
effective IO address beginning with the I, X an.d Y parts of the instruction
word. The IO address specifies an IO register in some Unibus device or in
the console or memory controller, and for convenience we shall refer to this
effective IO address also as E. An IO address is analogous to an extended
virtual address in that it has a fundamental length of thirty bits, but n
of its bits are implemented in a given processor. In a KS10 IO addr &

t all
ss the

right eighteen bits are the register address, and the left twelve are the
controller number, of which only four bits are implemented. An IO address
thus has this format,

00000 REGISTER ADDRESS

0 13 14 17 18 35

where C is the controller number and bits O-13 must be zero. Of the sixteen
possible controller numbers only three are used at present: 0 addresses the
console and the memory controller; 1 addresses Unibus adapter 1; 3 ad-
dresses Unibus adapter 3. Presently allowed IO addresses are these, and no
others can be used.

Controller Register Address Specifies

0 100000 Memory status
0 200000 Console (microcode only)
1 400000-777777 Adapter 1 Unibus registers
3 400000-777777 Adapter 3 Unibus registers

The IO address calculation is like an effective address calculation in
which the result can be “global”, i.e. can have more than eighteen bits.
When the result is an l&bit “local” register address, it is automatically
interpreted as specifying controller 0. The calculation is limited to one level
of indirection or indexing or both, and any intermediate result that is used
as a memory address must be local (since the KS10 is confined to section 0).

If there is no indexing or indirection, the IO address is simply Y.

If there is indexing only and the left half of XR is negative, the IO
address is the local sum of Y and XR right.

If there is indexing only and XR is positive, the IO address is the global
sum of Y and XR (but remember that bits O-13 must be zero).

2-128 User Operations

-

If there is indirection only, the IO address is the contents of location Y.

If there is both indexing and indirection, the IO address is the contents
of the location specified by the sum of Y and XR right.

Note that an index register can supply the entire IO address, but it can also
be used to supply only the controller number when Y is the register ad-
dress. This latter technique is useful for employing common code for both
adapters.

BSIO Bit Set IO

714 A 1 x Y
0 a9 12 13 14 17 18 35

In the word read from IO register E, set bits corresponding to 1s in AC, and
write the result back in register E.

BCIO Bit Clear IO

715 A I x Y
0 89 12 13 14 17 18 3s

In the word read from IO register E, clear bits corresponding to 1s in AC,
and write the result back in register E.

RDIO Read IO

712 A I x
0 89 12 13 14 17 18

Read the contents of IO register E into AC.

Y
3s

WRIO Write IO

713 A I x
0 a9 12 13 14 17 18

Write the contents of AC into IO register E.

Y
3s

User Operations 2-129

TIOE Test IO Equal

710 A I x Y
0 89 121314 17 18

If all bits of IO register E corresponding
instruction in sequence.

TION Test IO Not Equal

35

to 1s in AC are zero, skip the next

711 A I x Y
0 89 12 13 14 17 18 35

If not all bits of IO register E corresponding to 1s in AC are zero, skip the
next instruction in sequence.

BSIOB Bit Set IO Byte

L 724 A I X Y 1
0 89 12 13 14 17 18 35

In the byte read from IO register E, clear bits corresponding to 1s in AC
bits 28-35, and write the result back in register E.

BCIOB Bit Clear IO Byte

725 A I X Y
0 89 12 13 14 17 18 35

In the byte read from IO register E, clear bits corresponding to 1s in AC
bits 28-35, and write the result back in register E.

RDIOB Read IO Byte

722 A I X Y
0 89 12 13 14 17 18 35

Read the contents of IO register E into AC bits 28-35. Clear AC bits O-27.

2-130 User Operations

‘Y

WRIOB Write IO Byte

723 A 1 x Y
0 a9 12 13 14 17 18

Write the contents of AC bits 28-35 into IO register E.

35

TIOEB Test IO Equal, Byte

720 A I XI Y
0 89 12 13 14 17 18 35

If all bits of IO register E corresponding to 1s in AC bits 28-35 are zero,
skip the next instruction in sequence.

TIONB Test IO Not Equal, Byte

721 A I x Y
0 89 12 13 14 17 18 35

If not all bits of IO register E corresponding to 1s in AC bits 28-35 are zero,
skip the next instruction in sequence.

Unibus devices generally have data registers and control/status regis-
ters. Frequently a single IO address specifies two registers, one for reading
and one for writing. A control register and a status register in a device
usually have the same address and also have bits in common, i.e. informa-
tion loaded into some of the control bits can be read as status. Ordinarily a
device is set up by loading or adjusting individual bits of its control regis-
ter. Data can then be read or written, and the state of the device can be
determined by reading status or testing individual status bits. Complete
information about the characteristics of each device is given in the device
documentation.

Giving an IO address for a register that does not exist produces a page
fail trap (664.3, 4.4).

2.18 Pre-KS10 Input-Output Instructions

In the KLlO and earlier processors, the input-output instructions control
the movement of information to and from the peripheral equipment and
perform many system-oriented operations within the processor, i.e. man-
agement of the internal devices, which in the KLlO are connected to the E
bus.

User Operations 2-131

An instruction in the in-out class is designated by 111 in bits O-2, i.e.
its left octal digit is 7. In this section these instructions are shown like this,

7 D I I x Y
0 2 3 9 10 12 13 14 17 18 35

where bits lo-12 are given as a 2-digit octal number to select one of eight
IO instructions, which are described here in terms of their general effects
for handling external devices, and D addresses the device that is to respond
to the instruction. The format thus allows for 128 device codes, of which the
KLlO uses the first six (000-024) for internal devices (the KIlO uses the
first three, the KAlO the first two). In instruction descriptions for individ-
ual devices, the instruction and device codes are combined into a single 5-
digit code for bits O-12. Codes for the internal devices are included in the
tables in Appendix A, but all information about external devices - device
codes, individual instruction descriptions, etc. - is given in the device doc-
umentation.3g Bits 13-35 are the same as in all other instructions: they are
the I, X, and Y parts, which are used to calculate an effective address, set of
conditions, or mask to be used in the execution of the instruction.

NOTE

Ordinarily the user has no use whatever for the instructions
described in this section. In almost all cases, input and out-
put is handled by the Monitor in response to user requests
employing MUUOs and various software formats. For infor-
mation on user procedures vis-a-vis Monitor handling of user
IO requirements, the reader should refer to the appropriate
Monitor Calls manual.

Programmers who do use these instructions should note
that unless otherwise specified, all instructions described in
the remainder of this manual are in-out instructions, which
are affected by the timeshare instruction restrictions. Except
in the KAlO, in-out instructions using device codes 740 and
above are not restricted. But an instruction using a device
code under 740 (or given in a KAlO) cannot be performed by
a user program unless User In-out is set and cannot be per-
formed in supervisor mode at all (in-out is normally handled
in kernel mode). Any in-out instruction that violates these
restrictions does not perform the functions given for it in the
instruction description. Instead it executes as an MUUO.

These restrictions will not be mentioned in the instruc-
tion descriptions, as they apply to all instructions from this
point on.

--

3g Electrical and logical specifications of the IO bus are given in the interface manual.

2-132 User Operations

CON0 Conditions Out

7 D 2OI x Y 1
0 2 3 Y IO I2 13 14 17 18 35

Set up device D with the effective initial conditions JY.~O The number of
condition bits in E that are actually used depends on the device.

CONI Conditions In

7 D 24 I X Y I
0 2 3 Y IO I2 I3 I4 I7 I8 3s

Read the input conditions from device D and store them in location E. The
number of condition bits stored depends on the device; the remaining bits in
location E are cleared.

DATA0 Data Out

7 D 141 x Y
0 23 Y IO I2 I3 14 I7 I8 3s

Send the contents of location E to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location E
are unaffected.

DATAI Data In

7 D 041 x Y
0 23 Y IO I2 I3 I4 I7 I8 35

Move the contents of the data buffer in device D to location E, and perform
whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are
cleared.

Jo E will always be regarded as being bits 18-35, even though it is actually placed on both
halves of the bus and many devices receive the information from the left half.

User Operations 2-133

CONSZ Conditions In and Skip if Zero

7 D 301 x Y
0 23 Y IO 12 13 14 17 18 35

Test the input conditions from device D against the effective mask E. If all
condition bits selected by 1s in E are OS, skip the next instruction in se-
quence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.41

CONS0 Conditions In and Skip if One

7 D 341 x Y
0 23 Y IO 12 13 14 I7 IX 3s

Test the input conditions from device D against the effective mask E. If any
condition bit selected by a 1 in E is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.41

BLKO Block Out

7 D IO/ x ?
0 23 Y IO I2 13 I4 I7 IH .3 5

BLKI Block In

7 D 00 I x Y
0 23 Y IO I2 I3 I4 I7 18 3 5

Add one to each half of a pointer 42 in location E, and place the result back
in E. Then perform a data IO instruction in the same direction as the block
IO instruction, using the right half of the incremented pointer as the effec-
tive address. If the given instruction is a BLKO, perform a DATAO; if a
BLKI, perform a DATAI.

The remaining actions taken by this instruction depend on whether it
is executed as a priority interrupt instruction.

Not as an Interrupt Instruction. If the addition has caused the count in
the left half of the pointer to reach zero, go on to the next instruction in
sequence. Otherwise skip the next instruction.

41 Condition bits in the left half word can be tested by reading
using a test instruction (02.7).

them with a CON1 and then

42 In the KAlO incrementing both halves of the pointer is effected by adding 1OOOOO1s to the
entire register (and a carry can therefore go from the right half into the left).

._

.-

2-134 User Operations

-

As an Interrupt Instruction. If the addition has caused the count in the
left half of the pointer to reach zero, execute the instruction in the
second interrupt location for the level. Otherwise dismiss the interrupt
and return to the interrupted program.

It is not expected that block instructions will be of any use in a
DECSYSTEM-20. For compatibility however, the address supplied by the
pointer is taken to be in the local section.

Notes. A block IO instruction is effectively a whole in-out data han-
dling subroutine. It keeps track of the block location, transfers each data
word, and determines when the block is finished.

Initially the left half of the pointer contains the negative of the number
of words in the block, the right half contains an address one less than that
of the first word in the block.

The above eight instructions differ from one another in their total ef-
fect, but they are not all different with respect to any given device. A BLKO
acts on a device in exactly the same way as a DATA0 - the two differ only
in counting and other operations carried out within the processor and mem-
ory. Similarly, no device can distinguish between a BLKI and a DATAI;
and a device always supplies the same input conditions during a CONI,
CONSZ or CONS0 whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre-
sented by the first four instructions described above. Moreover, a complete
treatment of the programming of any external device can be given in terms
of these four instructions, two of which are for input and two for output.43
The four exhaust the types of information transfer that occur in the IO
system.

Every device requires initial conditions; these are sent by a CONO,
which can supply up to eighteen bits of control information to the device
control register. The program can determine the status of the device from
up to thirty-six bits of input conditions that can be read by a CON1 (but
only the right eighteen can be tested by a CONSZ or CONSO). Some input
bits simply reflect initial conditions sent by a previous CONO; others are
set up by output conditions but are subject to subsequent adjustment by the
device; and still others may have no direct connection with output condi-
tions.

Data is moved in and out in bytes of various sizes or in full 36-bit
words. Each program transfer between memory and a device data buffer
requires a single DATA1 or DATAO. Every device has a CON0 and CONI,
but it may have only one data instruction unless it is capable of both input
and output. A DATA1 that addresses an output-only device simply clears
location E. On the other hand a DATA0 that addresses an input-only de-

43 The word “input” used without qualification always refers to the transfer of data from the
peripheral equipment into the processor; ‘toutput” refers to the transfer in the opposite
direction.

User Operations 2-135

vice is a no-op. When the device code is undefined or the addressed device is
not in the system, a DATAO, CON0 or CONS0 is a no-op, a CONSZ is an
absolute skip, a DATA1 or CON1 clears location E.

The general effects of the IO instructions are as given above, but a
single instruction varies in its individual effects from one external device to
another. For KIlO and KAlO internal devices, the instructions still have
the same general effects and have the same relation to one another; but
again they vary in individual effects that are documented in the descrip-
tions in Chapter 5. The situation is quite different however with respect to
KLlO internal devices. For example, a DATA1 PAG, is really a DATA1 - it
reads information from the pager; but a DATA1 CCA, is not a DATA1 - it
sweeps through the cache invalidating all pages, and it has its own mne-
monic, SWPIA. The instruction BLKI PI, has no connection whatever with
DATA1 PI, because it is not a block instruction at all - it is actually the
instruction RDERA, which reads the error address register. In other words,
although some of the IO instructions for KLlO internal devices are equiva-
lent in general terms to the same instructions for external peripherals,
many of them are uniquely defined operations that bear none of the stand-
ard relationships to the typical case or to other instructions using the same
device code (in some cases even when for the same device). When a unique
mnemonic is assigned for an instruction, the form using a device mnemonic
is given at the right end of the top line in the description.

2.19 User Programming

The preceding sections define the machine language characteristics of the
system from a user point of view. But efficient and effective use of the
system is affected greatly by the software; the user should therefore consult
the appropriate Monitor manual, especially for the employment of the Mon-
itor for input-output. For convenience we list here those rules that the user
must observe and that are the result of KLlO and KS10 hardware charac-
teristics.
l If an area of memory is write-protected, e.g. for a reentrant program
shared by several users, do not attempt to store anything in it. In particular
do not execute a JSR or JSA into a write-protected page.
l Use the MUUO codes only in the manner prescribed in the Monitor
manual. Unless they are prescribed for special circumstances, the unas-
signed codes should not be used. Code 000 should never be used under any
circumstances.
l Do not use HALT (JRST 41, unless you want your program stopped.
l Always be aware of the context in which the program is running, and
make sure to use only operations appropriate to that context. In particular
be familiar with which forms of the JRST instruction are legal in which
circumstances, as explained in $2.9. JRST functions for handling interrupts
are legal when IO is legal.
l Unless User In-out is set do not give any IO instruction with device
code less than 740 (anfit all in the KSlO). The program can determine if
User In-out is set by examining bit 6 of the saved flags.

-

2-136 User Operations

l If your public program has the use of concealed programs, do not refer-
ence a location in a concealed page for any purpose except to fetch an
instruction from a valid entry point, i.e. a location containing a PORTAL
(JRST 1,).
l In an extended processor, do not use XBLT or SFM in section 0 or JEN
in a nonzero section. Also be aware of the differences between running in
section 0 and in other sections. Differences appear both in the execution of
instructions, such as JSR and JSP, and in the format and handling of such
quantities as index registers, indirect address words, and stack and byte
pointers.
l Make sure to format the accumulators correctly in string instructions
($2.12).

The user can give a JRSTF or XJRSTF but a 0 in bit 5 of the PC word
or flag word does not clear User (a program cannot leave user mode this
way); and a 1 in bit 6 does not set User In-out, so the user cannot void any
of the instruction restrictions himself. Note that a 0 in bit 6 will clear User
In-out, so a user can discard his own special privileges. Similiarly a 1 in bit
7 sets Public, but a 0 does not clear it, so a public program cannot enter
concealed mode this way.

Many hardware characteristics however are actually transparent to
the user, in particular the whole paging setup is invisible. Although the
hardware allows for user virtual address spaces that are scattered or very
large (even larger than available physical memory), the actual constraints
will be dictated by the particular Monitor and the system manager. Most
TOPS-10 Monitors enforce a two-segment virtual address space that mim-
ics the one imposed by the KAlO hardware. In any case the user must write
a sensible program, which can be handled easily and cheaply by the system;
if he uses addresses a few to a page all over memory, his program can be
run but will require a much larger amount of space than necessary or cause
excessive page swapping.

The basic idea is to localize everything as much as possible. Do not
spread parts of the program out through the address space leaving gaps.
Put together whatever will be used together: divide a large program into
smaller segments, and with each group of instructions put whatever
pointers, data locations and the like that will be used with it. Group to-
gether subroutines that are called by the same programs. If a package is to
be used at all frequently, take advantage of the various features, e.g. a core
map, provided by the Digital software to determine just how the package
was assembled, and if necessary revise it to reduce the working set of
pages.

The rules given above apply generally to all systems, but there are
minor differences from one to another, and a user who wishes to write
programs to run on more than one type of processor must be aware of
whatever incompatibilities exist. For example, the interrupt handling
JRST functions are legal in user IO mode except on the KIlO, where they
are restricted to kernel mode. Because of the more restricting JRST decod-
ing in the earlier processors, the KLlO and KS10 have more functions, and
they produce quite different effects when given in a KIlO or KAlO program.
The matter of unassigned codes works both ways with respect to different

User Operations 2-137

processor models: instructions added in a later machine use codes unas-
signed in earlier machines, but the codes for the software double precision
floating point instructions are unassigned in later machines. Unassigned
codes that correspond to implemented instructions in other machines
should be used only if the software includes interpretive routines for them,
but wherever possible they should be avoided because of the severe time
penalty.

2-138 User Operations

Chapter 3

KLI 0 System Operations

The information presented in this chapter is primarily for Digital’s own
system programmers, for their use in writing the Monitor and other soft-
ware. However it is also needed by anyone who wishes to write his own
operating system, to some extent by users who handle their own IO, and by
programmers in a situation where all the facilities of a system are dedi-
cated to a single large task.

WARNING

KLlO functions are implemented in microcode, which can be
changed much more easily than hardware. Although user op-
erations are deliberately kept as compatible as possible from
one machine to the next, Digital will change the KLlO sys-
tem microcode whenever such change will result in greater
speed, eficiency or effectiveness. Therefore anyone writing
system software should make sure to use the most recently
updated version of this documentation, and before embarking
on any project as enormous and critical as an operating sys-
tem, to check with Large Systems Engineering for any
changes not yet documented,

Programming for the system as a whole is programming in executive
mode. Only the kernel program is without instruction restrictions, and only
it can, if needed, access physical memory unpaged. The supervisor program
labors under the same instruction restrictions as the user and has no way of
bypassing them, although it can read but not alter concealed pages (the
kernel program can supply data tables to the supervisor program, and the
latter cannot affect them).

3-l

The amount of useful work done by the system depends upon how
efficiently and effectively the executive manages the system. This means
selecting which processes will run when, managing their working sets, re-
sponding to their needs, and even reacting to error situations or perhaps
downright unacceptable behavior on the part of a user. The kernel program
accomplishes these objectives by handling all in-out for the system, setting
up page maps, trap locations, interrupt locations and the like for both itself
and the users, handling user accounts, communicating with the front end,
and so forth. In other words, except for handling in-out, the activities of an
operating system are the topics covered in this chapter. Of course the sys-
tem programmer must also be quite familiar with all of the material pre-
sented in the preceding chapters. In particular he must fully understand
the architecture of the system as discussed in Chapter 1, and must be
especially well versed in the use of the JRST instruction, MUUOs, and IO
instructions ($92.9, 2.16, 2.18).

System information for other processors is given in Chapters 4 and 5.
The present chapter is devoted solely to the KLlO, but contains two sections
on paging, only one of which is applicable to a given system. $3.3 describes
the paging used with the TOPS-10 Monitor in a Single-section KLlO; this
paging is similar to that of the KIlO. 83.4 treats the paging associated with
the TOPS-20 Monitor and the TOPS-10 Monitor in an Extended KLlO.
Both kinds of paging employ essentially the same hardware - the differ-
ence lies principally in the microcode.

Much of the material presented here is related to the DTE20s, the
channels, and the DIABO. Although the chapter. does describe all activities
of the microcode undertaken for these devices (e.g. the front end functions
in 43.7), the descriptions of the devices themselves are not included.

CAUTION

All IO instructions in this chapter are for internal devices
(E bus functions). An address given by such an instruction
for storing a result is always interpreted as global in the
section containing the instruction. Hence data or conditions
in cannot be stored in an AC unless the instruction is in
section 0 or 1.

3.1 Priority Interrrupt

The DECSYSTEM-20 is essentially a system of processors clustered
around the E bus. The various controllers and interfaces are subsidiary to
the PDP-10, but maintain a considerable degree of independence from it.
Each RH20 Massbus controller operates from its own command list in
memory and handles all data transfers via the channels; but it must reach
the Ten program to start a new list or if something should go wrong. Each
PDP-11 is a whole computer with its own internal program; but for han-
dling IO equipment or acting as the system console, it must communicate
with Ten memory via the E bus (to which it is interfaced by a DTEBO), and

-

3-2 KLlO System Operations June 1982

‘.

the peripheral computer must reach the Ten program for setting up mutual
operations. Basically the priority interrupt system allows the other proces-
sors to interrupt the central processor at various levels of priority, so that
all can operate simultaneously. The hardware also allows conditions inter-
nal to the PDP-10 to signal its own program by requesting an interrupt.

In a DECsystem-10, the PDP-11 is limited to use as a system console
and diagnostic facility, and the unit-record peripheral equipment is organ-
ized around a KIlO-type IO bus connected to the E bus via a DIA20 IO bus
interface. If the system lacks internal channels, Massbus controllers must

June 1982 KLlO System Operations 3-2.1

be of the RHlO type, which the program controls via the IO bus. For data
purposes an RHlO is connected to external memory by a separate memory
bus. It is recommended that those who program a DECsystem-10 read both
this section and the first few pages of the discussion of the KIlO interrupt1
(05.2).

Interrupt Requests

Interrupt requests are handled on eight levels arranged in a priority se-
quence. Levels are numbered O-7, with 0 having highest priority. Level 0 is
quite unlike the others, however, in that it is available only to the front end
processors for simulating console functions and handling byte transfers.
Moreover level 0 is always active - it cannot be turned off even by inac-
tivating the interrupt system. The program does control the enabling of
level 0 in the DTE20s, but the master front end can even override that.
Assignment of devices2 to the remaining levels is entirely at the discretion
of the programmer. To assign a device to a level, the program sends the
number of the level to the device control register as part of the conditions
given by a CON0 (usually bits 33-35); a zero assignment disconnects the
device from the interrupt levels altogether. Any number of devices can be
placed on the same level.

When a device requires service, it sends an interrupt request signal on
its assigned level over the bus to the processor. A request is recognized by
the processor if the level is active - meaning that both the interrupt sys-
tem and the individual level3 have been turned on. But the processor can
accept no requests while it is processing a request or starting an interrupt
at any level, or holding an interrupt on the same level or on a level with
higher priority than those on which requests have been recognized (in other
words, if the current program is a higher priority interrupt routine). The
request signal remains on the bus however until turned off by an appropri-
ate response from the processor: either given by the program (CONO,
DATAO, or DATAI, depending on the device), or generated automatically
by the hardware. Thus if a request is not recognized or accepted when
made, it will be when the necessary conditions are satisfied. A single level
will even shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waiting
with another request.

1 On the Ten side of the DIABO, the interrupt works as described here. But on the other side
it acts more like the KIlO interrupt, with seven programmable levels, second-order prior-
ity determined by proximity to the DIABO, etc. Of course the processor activities and
interrupt functions available are those of the KLlO.

2 As explained in $2.18, the program treats all E bus controllers, internal subsystems, and
IO bus peripherals as IO devices. In other words, it monitors and controls them by means
of IO instructions using appropriate device codes. For a PDP-11, the device is the DTEBO.

3 Remember that level 0 is always active, even when the interrupt system is off. In other
respects this discussion applies to all levels.

KLlO System Operations 3-3

The request signal is generally derived from a flag that is set by vari-
ous conditions in the device. Often associated with these flags are enabling
flags, where the setting of some device condition flag can request an inter-
rupt on the assigned level only if the associated enabling flag is also set.
The enabling flags are in turn controlled by the conditions supplied to the
device by a CONO. For example, a device may have half a dozen flags to
indicate various internal conditions that may require service by an inter-
rupt; by setting up the associated enabling flags, the program can deter-
mine which conditions shall actually request interrupts in any given cir-
cumstances.

Processing a Request. The processor handles only one request at a
time. When it is ready, it accepts the highest priority request currently
recognized, provided that request is on a level higher than the current
program (all levels are higher than a noninterrupt program). To process a
request the hardware sends an interrupt service demand to the devices on
the E bus to determine which ones are currently requesting an interrupt on
the accepted level. Note that at this point the processor is accepting not an
individual request, but rather a class of requests: namely all those being
made on the same level. Should the bus be busy, the demand is sent as soon
as it becomes available, taking precedence over any IO instruction that
may also be waiting (note that in this situation the program actually stops).
From among the devices that respond to the demand on the accepted level,
the processor selects the one of highest priority4 according to this schedule:

Physical
Devices in Order of Decreasing Priority Device Number?

Interval counter

Other internal requests - processor error
flags, program initiated request

Channels O-7

DTE20s O-3

DIA20 - i.e. any device on the IO bus

o-7

10-13

17

4 There are therefore two orders of priority associated with an interrupt: first the level, and
then for all devices requesting interrupts simultaneously on the same level, physical de-
vice number. These physical numbers are not the device codes used in the IO instructions;
they are just for interrupt priority purposes and depend on position on the backplane (the
RH20s are ordered opposite from the slot numbers).

5 Physical numbers 14-16 are not used.

KLlO System Operations

If the device selected is internal, no further processing of the request is
required. Otherwise the hardware sends a function demand to the selected
device (by specifying its physical number along with the interrupt level),
and the device responds by returning an interrupt function word. In either
case, once all necessary information about the request has been gathered,
the interrupt system waits for the interrupt to start The microcode checks
frequently for a waiting request, and upon discovering one departs from its
normal routine to start an interrupt. At such time PC points to the inter-
rupted instruction, so a correct return can later be made to the interrupted
program.

Interrupt Functions and Instructions

The action taken by the microcode to start an interrupt depends upon the
function specified by the function word returned to the processor. Two fixed
locations in the executive process table are associated with each level, loca-
tions 40 + 2N and 41 + 2N, where N is the level number. Level 1 uses
locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which uses
56 and 57. The processor starts a “standard” interrupt for level N by exe-
cuting the instruction in the first interrupt location for the level, i.e. loca-
tion 40 + 2N. This type of interrupt is performed for a processor error or
program-initiated request, for an external device whose function word spec-
ifies a standard interrupt, and also for an IO bus device that returns no
function word. The fixed locations however need not be used. The interrupt
function word sent by the device may specify an equivalent interrupt using
a pair of locations selected by the function word, or some other interrupt
function entirely. The function word (which is saved in AC 3, block 7) has
this format.

ADDRESS
SPACE FUNCTION

,\,I,, Q DEVICE 0 0 INTERRUPT ADDRESS
1

0 2 3 5 6 7 1011 1213 35

The microcode acts from a function word whether there is one or not; its
absence is taken as a zero function. The DIA20 returns the word supplied
over the IO bus or simulates a zero word. Bits 7-10 identify the device by
its physical number, but this is supplied by the interrupt hardware, not the
device. The meanings of the other bits in the word are as follows

O-2 In unrestricted examine and deposit functions, codes given in
these bits select the space in which the address supplied in bits
13-35 is interpreted.

0 Executive process table
1 Executive virtual address space
4 Physical address space

Remaining codes are reserved.

June 1982 KLlO System Operations 3-5

3-6 Interrupt function (bits 3-51, sometimes qualified by Q (bit 6).
When unspecified, Q is irrelevant. The microcode handles func-
tions 4-6 even when it is in the halt loop.

0 Internal device or zero word: for the interval counter perform a
vector interrupt (see function 2); otherwise perform a standard
interrupt (see function 1).

1 Standard interrupt - execute the instruction in location
40 + 2N of the executive process table.

2 Vector interrupt - action depends on device type as follows:
Interval counter - execute the instruction in location 514
of the executive process table.
DTEBO - execute the instruction in location 2 of the corre-
sponding DTEBO control block.”
Channel - execute the instruction in the executive process
table location specified by bits 27-35.
DIABO - dispatch interrupt: execute the instruction in the
executive virtual location specified by bits 13-35.

3 Increment - depending on whether Q is 0 or 1, add 1 to or
subtract 1 from the contents of the executive virtual location
specified by bits 13-35.

4 Examine - send the contents of the specified location to the
selected DTE20. If Q is 0, select the location according to bits
O-2 and 13-35. If Q is 1, use bits 14-35 as a physical address
and restrict the function to the communication area defined in
the DTEBO control block.” The examine is effected by perform-
ing a DATA0 to the DTE20.

5 Deposit - load the word supplied by the selected DTE20 into
the specified location If Q is 0, select the location according to
bits O-2 and 13-35. If Q is 1, use bits 14-35 as a physical
address and restrict the function to the communication area
defined in the DTEBO control block.’ The deposit is effected by
performing a DATA1 to the DTE20.

6 Byte transfer - increment the byte pointer for the direction
specified by Q (0 out, 1 in) from the control block for the
selected DTE20, and then move a byte between Ten memory
and the DTE20 according to the altered pointere6

7 Reserved (result indeterminate).

CAUTION

Because of the special cycle in which it is executed, an inter-
rupt function that uses virtual addressing cannot employ in-
direct pointers in its paging procedure (43.4).

6 For further information on front end interrupt functions, refer to $3.7.

- KLlO System Operations

\

June 1982

-

13-35 The bits among these that supply the address when the function
requires one depend on the address space.

Executive process table 27-35

Executive extended virtual address space 13-35

Executive unextended virtual address space 18-35

Physical address space 14-35

Regardless of what mode the processor is in when an interrupt occurs,
the interrupt operations are performed in kernel mode, and are therefore in
executive virtual address space unless the particular function selects some
other form of addressing. A page failure that occurs in an interrupt opera-
tion is never trapped; instead it sets the In-out Page Failure flag, which
requests an interrupt on the level assigned to the processor (83.8). These
considerations of course do not apply to a service routine called by an inter-
rupt instruction.

Interrupt Instructions. An instruction executed in response to an
interrupt request and not under control of PC is referred to elsewhere in
this manual as being “executed as an interrupt instruction.” Some instruc-
tions, when so executed, have different effects than they do when performed
in other circumstances. And the difference is not due merely to being per-
formed in an interrupt location or in response (by the program) to an inter-
rupt. To be an interrupt instruction, an instruction must be executed in the
first or second interrupt location for a level, in direct response by the hard-
ware (rather than by the program) to a request on that level. These loca-
tions may be the fixed ones for a standard interrupt or those given by the
function word for a vector interrupt. 92.17 describes the two ways a BLKO
is performed. If a BLKO is contained in an interrupt routine called by a
JSR, it is not “executed as an interrupt instruction” even in the unlikely
event the routine is stored within the interrupt locations and the BLKO is
executed by an XCT. There are two types of interrupt instructions executed
in a standard or dispatch interrupt; the effects of all other instructions are
undefined.

BLKI, BLKO. If the pointer count is not zero, the processor dismisses
the interrupt and returns immediately to the interrupted program (i.e.
it returns control to the unchanged PC). If the count is zero, the proces-
sor executes the instruction contained in the second interrupt location.

XPCW, JSR. The processor holds an interrupt on the level, takes the
next instruction from the location specified by the jump (as indicated by
the newly changed PC>, and enters either kernel mode or the mode
specified by the new flag word of the XPCW. Hence the instruction is
usually a jump to a service routine handled by the Monitor. XPCW is
the preferred instruction on the extended KLlO.

The most important point of which the programmer must be aware is
that even while User is set, the interrupt instructions are not part of the
user program. They are executed in kernel mode and are therefore subject
only to kernel mode restrictions. Regardless of the current PC section, the
address part of an interrupt instruction is interpreted as referencing sec-

KLlO System Operations 3-7

tion 0, except in a dispatch interrupt, where it references the section speci-
fied by the interrupt function word. As an interrupt instruction, JSR auto-
matically clears both User and Public to jump to a kernel mode service
routine. An XPCW should be set up to produce the same result. The XPCW
control block must be in section 0 unless the interrupt is a dispatch.

CAUTION

Because of the special cycle in which an interrupt instruction
is executed, the paging procedure for it cannot employ indi-
rect pointers (63.4).

Interrupt Programming

The program can control the priority interrupt system by means of condi-
tion IO instructions. The device code is 004, mnemonic PI.7

CON0 PI,

I

Conditions Out, Priority Interrupt

I I I _.
_

70060 I’] x 1 Y
0 I2 13 I4 1718 35

I

Perform the functions specified by the effective conditions E as shown* (a 1
in a bit produces the indicated function, a 0 has no effect).

DROP PROGRAM INITIATE
REQUESTS ON INTERRUPTS
SELECTED ON
LEVELS

I

WRITE EVEN CLEAR
TURN TURN TURN TURN
ON OFF OFF ON

PARITY PI
SELECT LEVELS FOR BITS 22,24,25,26

ADDRESS/ DATA 1 DIRCTRY
SYSTEM SELECTED LEVELS PI SYSTEM

I 1 I 1~2~3~4~5~6~7

I8 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 3'2 ' 33 34 35

22

23

24

On levels selected by 1s in bits 29-35, turn off any interrupt requests
made previously by the program (via bit 24).

Turn off the priority interrupt system, turn off all levels, drop all
program-set requests, and dismiss all interrupts that are currently
being held.

Request interrupts on levels selected by 1s in bits 29-35, and force the
processor to recognize them even on levels that are off. The request
remains indefinitely, so as soon as an interrupt is completed on a
given level another is started, until the request is turned off by a
CON0 that selects the same channel and has a 1 in bit 22.

7 Data instructions with device code PI are unassigned and execute as MUUOs. The block
instructions are used for error and diagnostic purposes (03.8).

8 Bits 18-20 are for test purposes only. They are used to force errors and are discussed in
93.8.

3-8 KLlO System Operations

Remember that the processor allows the program to continue
while it processes a request. Thus when this bit forces recognition of a
request, many additional program instructions may be performed be-
fore the interrupt, even on the highest priority level. Moreover if the
request is allowed to remain, additional instructions may be per-
formed between successive interrupts. For other than the highest pri-
ority level, the greater the number of higher levels active, the greater
the amount of program time available both initially and between suc-
cessive interrupts. If the program forces an interrupt on the lowest
level when all are active, there can be a very long time between
CON0 PI, and its interrupt.

25 Turn on the levels selected by 1s in bits 29-35 so interrupt requests
can be recognized on them.

26 Turn off the levels by Is in bits 29-35, so interrupt requests cannot be
recognized on them unless made by a CON0 PI, with a 1 in bit 24.

27 Turn off the interrupt system so no requests can be recognized.

28 Turn on the interrupt system so the hardware can process requests.

CONI PI, Conditions In, Priority Interrupt

70064 I x Y

0 12 13 14 17 18 35

Read the status of the priority interrupt (and several diagnostic bits) into
location E as shown.

PROGRAM REOULSTS L?N LtiElS

WRITE EVEN
lNTERRUPT IN PROGRESS ON LEVELS

Pi
PARITY SYSTEM LEVELS ON

ADDRESS] DATA jD!RClRY , 1 2 I3 14 I5 I 6 / ON 7 I / 2 13 14 15 / 6 j i

I8 19 20 21 22 23 ' 24 25 26 ' 27 28 29 130 31 32 ' 33 34 35

Levels that are on are indicated by Is in bits 29-35; 1s in bits 21-27 indi-
cate levels on which interrupts are currently being held; and 1s in bits
11-17 indicate levels that are receiving interrupt requests generated by a
CON0 PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt system is on,
and 1s in bits 29-35 therefore indicate active levels.

The remaining conditions read by this instruction have nothing to do
with the interrupt. Bits 18-20 reflect several diagnostic functions discussed
in 43.8.

Dismissing an Interrupt. Unless the interrupt operation dismisses
the interrupt automatically, the processor holds an interrupt until the pro-

KLlO System Operations 3-9

gram dismisses it, even if the interrupt routine is itself interrupted by a
higher priority level. Thus interrupts can be held on a number of levels
simultaneously, but from the time an interrupt is started until it is dis-
missed, no interrupt request can be accepted on that level or any of lower
priority.

A routine dismisses the interrupt by using an instruction that restores
the level on which the interrupt is being held at the same time it returns to
the interrupted program. The proper instruction is XJEN (JRST 7,) in an
extended KLlO, otherwise JEN (JRST 12,). Once the level is restored, the
hardware can again accept requests and start interrupts on it and lower
priority levels. These instructions also restore the flags: XJEN from the
flag-PC doubleword if the routine was called by an XPCW; JEN from the
left half of the PC word if the routine was called by a JSR in section 0.
XJEN also restores the previous context section if the return is being made
to an executive program.

CAUTION

An interrupt routine must dismiss the interrupt when it re-
turns to the interrupted program, or its level and all levels of
lower priority will be disabled, and the processor will treat
the new program as a continuation of the interrupt routine.

Timing. The maximum time a device may wait for an interrupt to
start depends on how many active devices are of higher priority and how
long their service routines are. When a given request is of highest priority,
its device need never wait longer than 10 ps.

Special Considerations. When an interrupt occurs, PC points to the
interrupted instruction (or to an XCT that executed it>, unless the interrupt
occurred in an overflow trap instruction, in which case PC points to the
instruction that overflowed. After taking care of the interrupt, the proces-
sor can always return to the interrupted instruction. Either a> the instruc-
tion did not change anything; b) the interrupt was in the second part of a
two-part instruction, where First Part Done being set prevents the proces-
sor from repeating any unwanted operations in the first part; or c) the
interrupt occurred at some point in a multipart instruction where the mi-
crocode rigged the various pointers and other quantities so the processor
actually restarts the instruction where it stopped, rather than from the
beginning. However, in a BLT and in byte manipulation, the very mecha-
nism that facilitates the return results in special properties of which the
programmer must be aware.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that
holds the pointer as an index register in the same BLT, he cannot have the
BLT load AC except by the final transfer, and he cannot expect AC to be
the same after the instruction as it was before.

3-10 KLlO System Operations

An interrupt can also start in the second effective address calculation
in a two-part byte instruction. When this happens, First Part Done is set.
This flag is saved as bit 4 of a flag word, and if it is restored by the inter-
rupt routine when the interrupt is dismissed, it prevents a restarted ILDB
or IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an IDLB or IDPB would skip a byte.
And if the routine restored the flag, the interrupted IDLB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for
user programs. Even if the User In-out flag is set, a user generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed
in the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
o Use interrupt instructions in a manner consistent with the special ef-
fects and conditions applicable to such instructions as described above.
l No request can be accepted, not even on higher priority levels, while a
request is being processed or an interrupt is starting. Therefore do not use
lengthy effective address calculations in interrupt instructions.
l To prevent a device from hanging up a level, the programmer must be
aware of - and satisfy - whatever requirements the device has for drop-
ping the request.
l The interrupt instruction that calls the routine should be an XPCW on
an extended KLlO, otherwise a JSR. In either case the paging for the in-
struction must not use indirect page pointers.
l The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Computations and any other time-
consuming activities that can possibly be performed outside the routine
should not be included within it.
l Never turn off the interrupt system in a routine unless it is absolutely
necessary, and then always turn it back on again as soon as possible. If one
or more levels can be turned off in place of the entire system, always do
that instead.
0 If the routine uses a UUO it must first save the contents of the loca-
tions that will be changed by it in case the interrupted program was in the
process of handling a UUO of the same type (82.16).
0 The routine must dismiss the interrupt (with an XJEN or JEN) when
returning to the interrupted program. Flags and UUO locations should be
restored.

3.2 Cache Management

For the user, the cache is transparent: any program simply gets informa-
tion from memory and stores information in memory. But use of a cache as
part of the memory subsystem reduces program time, since the cache is
faster than the storage modules, and also reduces storage use by the pro-

KLlO System Operations 3-11

gram, making a larger percentage of total storage cycles available to other
parts of the system. As explained in 91.7, transfers between processor and
memory are in four-word groups: storage references are to four locations at
a time.g The cache contains representations of a selection of such location
groups. One may view the cache as 2048 general purpose registers, organ-
ized in sets of four, which substitute temporarily for the most frequently
referenced physical storage location groups. The cache serves this function
regularly for the program, and where considered appropriate, for microcode
references as well. The way the hardware handles the cache depends upon
whether the initial processor reference to a location in a particular group is
read or write.

When the first processor reference to a group is to read the contents of
one of its locations, memory control retrieves the entire four-word group
containing the referenced location. The single word requested is supplied to
the program, but all four are placed in the cache and are validated, i.e. they
are tagged as words that do represent the true contents of memory. Subse-
quent references, read or write, to the same group are made to the cache,
not to storage. If the processor modifies the contents of a location in the
group, the new word supplied is substituted for the one in the cache loca-
tion, which is tagged as written. Thus the cache word is different from
storage but still valid - i.e. it represents what the storage location should
contain.

When the first reference to a group is for writing, there is no call to
storage at all. Instead the hardware sets aside a location group in the
cache, with the one word in it tagged as both valid and written. Further
reads or writes of the same location are handled solely with the cache, and
subsequent writes to other locations in the same group are handled just like
the first. But a read to a location that has not been written produces a
storage reference. The requested word is given to the processor, and all
words in the group that do not already have written representations in the
cache are inserted into the group entry.

When storage is being updated or a group entry that is not in use is
replaced by another, words just valid can be thrown away. But written
words must eventually be sent to a storage module.

Cache Structure. The 2048 locations in the cache are contained in 128
lines of sixteen each. The lines are identified by the possible group numbers
in a single page, O-177. Each line contains four group entries for the given
number. Each group entry in turn comprises the number of the physical
page” containing the storage group corresponding to the entry and repre-
sentations of the four locations in the group, each with valid, written and
parity bits.

g Of course memory control does not blindly request four storage cycles for every group even
when it is known that some are unnecessary. Fewer references are made when some
locations in a group already have valid representations in the cache, or the first or last
transfer in a channel block is for part of a group.

lo The list of all page numbers makes up the cache “directory.” For many hardware func-
tions the cache is organized in four quadrants. A quadrant contains 128 group entries,
one from each line.

-

3-12 KLlO System Operations June 1982

The hardware also includes a mechanism for keeping track of the use
of the various group entries. Whenever the processor references a group
whose corresponding line in the cache already contains valid entries from
four other pages, the hardware puts the new group representation in place
of the least recently used entry in the line. But in doing so it also updates
from any representations tagged as written in the displaced group entry.

Internal Channels. The channels are expected in general to deal with
the storage modules, but if the cache contains any valid words for a page
being handled through the channels, the hardware acts as follows:

In an output operation, any valid representations at locations addressed
by a channel are taken from the cache instead of storage.

In an input operation, all data is sent to storage. However any entries
that are in the cache for locations addressed by the channel are invali-
dated.

The reasons for this behavior are apparent. For output any valid words left
in the cache might as well be taken since that is faster than going to
storage. Furthermore some valid entries may have been written, and it is
assumed that storage will certainly not be more up to date than the cache.
Anything brought in via a channel is assumed to be the correct copy, and it
should therefore go to storage as the page cannot be in use at the same time
it is being loaded. Any valid entries left over in the cache must be from
some previous operation, and they should therefore be invalidated, so any
future references to those locations will go to storage for the correct copy.
Should any of the valid leftovers be tagged as written, it is assumed the
Monitor would have swapped out the modified page before bringing in the
new. Of course a page used as temporary storage, or to hold counters and
control words, albeit modified, can just be thrown away.

Cache Programming

The operations the program can perform on or for the cache are three: to
invalidate, to validate, and to unload. Any of these operations may be car-
ried out for all entries in the cache or for all entries of a single page. To
invalidate a location is simply to clear its valid and written bits so it no
longer represents anything. To validate or unload means to update storage,
i.e. to write a cached word into storage if it is tagged as written, and to
clear the written bit. Otherwise validating storage leaves the validity of the
cache entries unchanged, whereas unloading invalidates all entries, writ-
ten or not, in the groups being processed (all those in a single page or the
entire cache).

Following power turnon in any system, the cache use tables must be
initialized and the cache invalidated, as its initial state is indeterminate.
Beyond this, a system with a single central processor and internal channels
requires no cache programming, as everything is handled adequately by
the hardware. However if a system contains facilities that bypass the proc-
essor to deal directly with external memory, whether such facility be an
external channel or another central processor, then the Monitor must actu-
ally manage the relationship between storage modules and cache.

KLlO System Operations 3-13

As an example of such management and to illustrate the difference in
use between validation and unloading, consider the situation in which a
program is through with the data in a particular (modified) page and it is to
be swapped via an external channel with new data brought into the same
physical page for later use. The page must be unloaded into storage so that
subsequently the program will go there for the new data. On the other hand
suppose a program has created some code in a page, and the system is both
to go ahead and execute it immediately and place it in a library. Now
validation is the proper procedure: while the storage copy is being filed, the
program can continue execution from the cache.

For initialization and management, there is one instruction that ini-
tializes the use tables and six that sweep the cache to perform the above
three operations for a single page or all pages. Note that a sweep of the
entire cache is always necessary, even for handling a single page, as there
is no prior way of knowing whether any given line contains a group from
any given page. Sweeping for a single page does however take less time
than sweeping for all pages. In the latter case the sweeper must check all
512 group entries, whereas the former requires checking only every line to
see if it contains an entry for the specified page, and there can be at most
one such entry. Moreover sweeping for all pages can usually be expected to
require more storage references than sweeping for a single page. In this
light it should be noted that the sweep instructions simply initiate opera-
tions which are then carried forward by the cache sweeper. The program
can continue while the sweep is going on, but this can be expected to slow
down the sweep as the cache and program would then compete for storage
references. That a sweep is in progress is indicated by the Sweep Busy flag
being on, and at completion the sweeper clears Busy and sets Sweep Done.
The program can check both of these flags among what are otherwise the
processor error conditions, and it can enable the latter to request an inter-
rupt on the level assigned to the processor (63.8).

These are IO instructions wherein the cache sweeper has device code
014, mnemonic CCA. But the instructions have their own mnemonics since
they bear no relation to the standard IO operations. Six of the eight are
used: the BLKI and CON0 also sweep, doing nothing but wasting cache
cycle time. The single instruction that initializes the use tables is discussed
at the end of the section.

SWPIA Sweep Cache, Invalidate All Pages (DATA1 CCA,)

70144)/I x 1 Y 1 E is not used.”
0 I2 13 14 17 18 35

Set Sweep Busy, and clear the valid and written bits in all cache entries. At
the completion of the sweep, clear Sweep Busy and set Sweep Done, re-
questing an interrupt on the level assigned to the processor.

l1 I, X and Y are reserved and should be zero.

3-14 KLlO System Operations

SWPIO Sweep Cache, Invalidate One Page (CON1 CCA,)

r 7 0 I 6 3 I .Y Y 1
0 I2 I3 14 17 IX 3s

Set Sweep Busy, and clear the valid and written bits in all cache entries for
the physical page specified by bits 23-35 of E. At the completion of the
sweep, clear Sweep Busy and set Sweep Done, requesting an interrupt on
the level assigned to the processor.

SWPVA Sweep Cache, Validate All Pages (BLKO CCA,)

I 70150 I x Y] E is not used. l1
0 I2 I3 I4 17 I8 35

Set Sweep Busy, and write into storage all cached words whose written bits
are set. Clear all written bits but do not change the validity of any entries.
At the completion of the sweep, clear Sweep Busy and set Sweep Done,
requesting an interrupt on the level assigned to the processor.

SWPVO Sweep Cache, Validate One Page (CONSZ CCA,)

L 70170 I x Y
0 I2 13 14 17 18 35

Set Sweep Busy, and write into storage all cached words whose written bits
are set and which are found in entries for the physical page specified by bits
23-35 of E. Clear the written bits associated with those words sent to stor-
age, but do not change the validity of any entries. At the completion of the
sweep, clear Sweep Busy and set Sweep Done, requesting an interrupt on
the level assigned to the processor.

SWPUA Sweep Cache, Unload All Pages (DATA0 CCA,)

70154 I x Y] E is not used. ”

0 I2 13 14 17 I8 35

Set Sweep Busy, and write into storage all cached words whose written bits
are set. Invalidate the entire cache, i.e. clear all valid and written bits. At
the completion of the sweep, clear Sweep Busy and set Sweep Done, re-
questing an interrupt on the level assigned to the processor.

KLlO System Operations 3-15

SWPUO Sweep Cache, Unload One Page (CONS0 CCA,)

70174 I x Y
0 I2 13 14 17 18 35

Set Sweep Busy, and write into storage all cached words whose written bits
are set and which are found in entries for the physical page specified by bits
23-35 of E. Invalidate all entries for the specified page, i.e. clear both their
valid and written bits. At the completion of the sweep, clear Sweep Busy
and set Sweep Done, requesting an interrupt on the level assigned to the
processor.

Management of the cache is relatively straightforward. With external
channels the program must simply be sure always to update storage pages
before having them sent out, and to invalidate the cache entries for pages
being brought in so processor references will go to storage for the new data.

The same procedures are used for a multiprocessor system, but here a
problem arises when different processors are allowed to reference the same
page at the same time, if either is allowed also to modify the page. Without
modification the cache copies in both processors will remain valid; but if a
processor modifies the page, the other cannot expect to get up-to-date data
from cached words. To handle this situation, the pager includes mecha-
nisms for bypassing the cache. Each page mapping12 contains a cache bit for
determining whether cache use is allowed for the given page. This cache bit
applies only to an individual page, and has no effect at all unless cache use
is enabled by the cache look bit. Analogous to the mapping cache bit is a
load bit that applies to all unpaged references (such as pager references to
the process tables). The look and load bits are among the conditions the
Monitor provides to the pager. The way these “cache strategy” conditions
govern cache use is as follows.

Look

0 The cache is disabled - go to storage for all references.

1 Look in the cache for all references. This means always use the
cache (reading or writing) for any locations that already have valid
representations. Furthermore when there is no valid representa-
tion for a reference, load the cache (reading or writing) if either the
reference is unpaged and the load bit is 1, or the reference is paged
and the cache bit in the mapping for the page is 1.

l2 For information on page mapping refer to $3.3 or $3.4 depending on whether the system
uses respectively the TOPS10 or TOPS-20 Monitor. Instructions for handling the pager
are discussed in 93.5.

3-16 KLlO System Operations

Timing. Simple invalidation takes little time, and it interferes mini-
mally with the program since it requires no storage references. Otherwise
an average sweep requires on the order of several hundred microseconds,
but varies widely depending on the number of references required. Allow-
ing the program to run simultaneously slows down the sweep because of
competition for storage cycles, but program time is saved nonetheless

Initializing the Cache. The use logic contains two tables each with
128 entries. Each entry in the use table identifies the use history - from
most to least recently used - of the group entries in the corresponding
cache line. With each reference, the use entry for the line must be updated.
But instead of containing complex computational logic, the hardware has a
refill table that supplies new use entries as a function of the previous use
history of a given line and the group entry currently being accessed in the
line. Following power up the program must initialize the use logic by giv-
ing this instruction 128 times to load every 3-bit location in the refill table.

WRFlb Write Refill Table (BLKO APR,)

I 70010 III x I Y 1
0 12 I3 14 I? lb 35

Load the refill data given by bits 18-20 of E into the refill table location
specified by bits 27-33.13

REFILL TABLE DATA REFILL TfieLE ACCPkSS

I
I I I /

I

18 19 20 21 22 23 ' 24 25 26 27 26 29 ' 30 .31 3: ' 33 !4 35

After filling the refill table by stepping through locations O-177 (val-
ues of E that are multiples of 4 from 0 to 774), the program should give an
SWPIA to invalidate the indeterminate initial contents of the cache. Dur-
ing the sweep the normal monitoring of cache access by the use logic ini-
tializes the use table from the refill table. The way the use table gets set up
depends on the data pattern - the “refill algorithm” - loaded into the
refill table, and the pattern selected depends on the use strategy desired for
the cache. To limit cache use to a single quadrant, simply load the quadrant
number (O-3) into the entire refill table. The usual use strategy is to allow
equal use of all quadrants and to start with a presumed use history of most
to least recently used corresponding to the numerical order of the quad-
rants. To implement this strategy, l4 load the following data pattern

l3 The refill locations are selected by bits 27-33 to make use of the same lines that supply
group numbers to address entries in the use table.

l4 For information on refill algorithms for other use strategies, refer to the writeup of
MAINDEClO-DDQDA-GDGUBRTN).

KLlO System Operations 3-17

0 1 2 3 4 5 6 7

000 0 1 2 3 4 5 6 7
010 3 1 2 3 2 1 2 3
020 7 1 2 7 1 1 2 7
030 6 5 6 7 5 5 6 7

040 0 3 2 3 0 2 2 3
050 0 1 2 3 4 5 6 7
060 0 7 7 7 0 0 0 7
070 4 6 6 6 4 4 6 4

100 3 1 3 3 1 1 1 3
110 0 7 7 7 0 0 0 7
120 0 1 2 3 4 5 6 7
130 4 5 5 7 4 5 4 7

140 0 1 2 2 0 1 2 1
150 0 5 6 6 0 5 6 0
160 4 5 6 5 4 5 6 4
170 0 1 2 3 4 5 6 7

3.3 TOPS-10 Paging and Process Tables

General information about the machine modes and paging procedures is
given in $1.3. Here we treat in detail the structure of the process tables and
certain hardware procedures - paging and page failures - a knowledge of
which is necessary for an understanding of executive programming. This
section covers these topics relative to a machine that uses TOPS-10 paging,
i.e. a Single-section KLlO running a TOPS-10 Monitor (microcode version
earlier than 271). The next section presents equivalent information for
TOPS-20 paging. Instructions through which the Monitor controls the
pager and otherwise exercises overall management of the program envn-on-
ment are the same whether the system uses TOPS-10 or TOPS-20, and are
described in $3.5.

With paging turned on, the program considers all of its dealings with
‘memory to be in its virtual address space, and interrupt functions and
instructions reference executive virtual address space except in special
cases where a function specifically calls for physical references A virtual
address is any address given in virtual space except those for fast memory,
which are treated as physical. The pager maps only virtual addresses, but it
is involved in all references to the extent that it responds to error situa-
tions. Physical references include those made by the pager-microcode to
carry out the mapping procedure, and also microcode references to retrieve
interrupt instructions, handle traps and UUOs, and service the meters and
front end.

-

-

%18 KLlO System Operations June 1982

Paging

All of memory both virtual and physical is divided into pages of 51.2 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by U-bit addresses, where the left
nine bits (18-26) specify the page number and the right nine (27-35) the
location within the page. Physical memory can contain 8192 pages and
requires 22-bit addresses, where the left thirteen bits (14-26) specify the
page number. The hardware maps the virtual address space into a part of
the physical address space by transforming the N-bit addresses into 22-bit
addresses.15 In this mapping the right nine bits of the virtual address are
not altered; in other words, a given location in a virtual page is the same
location in the corresponding physical page. The transformation maps a
virtual page into a physical page by substituting a 13-bit physical page
number for the g-bit virtual page number. The mapping procedure is car-
ried out automatically by the hardware, but the page map that supplies the
necessary substitutions is set up by the kernel mode program. Each word in
the map provides information for mapping two consecutive pages with the
substitution for the even numbered page in the left half, the odd numbered
page in the right half.

The pager contains two 13-bit registers that the Monitor loads to spec-
ify the physical page numbers of the user and executive process tables. To
retrieve a map word from a process table, the pager uses the appropriate
base page number as the left thirteen bits of the physical address and some
function of the virtual page number as the right nine bits. For example, the
entire user space of 512 virtual pages at two mappings per word requires a
page map of just half a page, and this is the first half page in the user
process table. Thus locations O-377 in the table hold the mappings for
pages 0 and 1 to 776 and 777. To find the desired substitution from the g-bit
virtual page number, the hardware uses the left eight bits to address the
location and the right bit to select the half word (0 for left, 1 for right).

The executive virtual address space is also 256K, but the page map for
it is in three parts. The map for the first 112K (pages O-337) is in executive
process table locations 600-757. The map for the second half of the virtual
address space uses the same locations in the executive process table as are
used in the user process table for the user map (locations 200-377 for pages
400-777). The map for the remaining 16K in the first half of the executive
virtual address space is in the user process table, the mappings for pages
340-377 being in locations 400-417. This means the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user. Hence when switching from one user to another,
the Monitor need change only the user process table, this single substitu-
tion making whatever change is necessary in the executive address space
for a particular user.

l5 For paging p ur p oses page 0 has only 496 locations using addresses 20-777, as addresses
O-17 reference fast memory, which is unrestricted and available to all programs. (In
general a user cannot reference the first sixteen storage module locations in his virtual
page 0.) Throughout this discussion it is assumed that all references are to storage.

KLlO System Operations 3-19

77771

Figure 3.1: TOPS-10 Virtual Address Space and Process Table Layout

USER
VIRTUAL
ADDRESS
SPACE

EXECUTIVE
VIRTUAL
ADDRESS
SPACE

256K

I

i

\
i

i-
17
/

0

USER
PROCESS
TABLE

1 000-777 256

340000
/

/'
/'

400000
_---

TRAP 23

MUUO 2 16

INTERRUPT 3.1

METERS 3 6

CITE20 3.7

777717

112K

16K

128K

I EXECUTIVE
I PROCESS
I TABLE
I
I

CHANNEL
LOGOUT AREAS

32

I 16
I 4
I

\
44

I
I DTEZO 21

;/ ,I CONTROL BLOCKS 1"

I /

Y
‘I

/I
400 -777 128

/I '
/

I

\
\ 52

5

51

I:
: '1

112

\

i ',

I 16
-

I

:

SHADED AREAS
ARE RESERVED

3-20 KLlO System Operations

Figure 3.2: TOPS-10 Process Table Configuration

USER PROCESS TABLE EXECUTIVE PROCESS TABLE

0 USER PAGE 0 USER PAGE 1
0 EIGHT CHANNEL LOGOUT AREAS

I

EACH. 0 INITIAL CHANNEL COMMAND I

1 GETS CHANNEL STATUS WORD I
2 GETS LAST UPDATED COMMAND

3 RESERVED I

I

i
I
I

I i I

377 USER PAGE 776 USER PAGE 777

400 EXECUTIVE PAGE 340 EXECUTIVE PAGE 341

I I I

417 EXECUTIVE PAGE 376 EXECUTIVE PAGE 377

420

421

422

423

424

425

426

427

430

431

RESERVED

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION

SUPERVISOR NO TRAP MUUO NEW PC WORD

SUPERVISOR TRAP MUUO NEW PC WORD

CONCEALED NO TRAP MUUO NEW PC WORD

CONCEALED TRAP MUUO NEW PC WORD

436 PUBLIC NO TRAP MUUO NEW PC WORD

437 PUBLIC TRAP MUUO NEW PC WORD

440

1 RESERVED I

477 I
500 PAGE FAIL WORD

501 PAGE FAIL OLD PC WORD I

502 PAGE FAIL NEW PC WORD

503 RESERVED
1

504

505 I
USER PROCESS EXECUTION TIME

I

506

507
USER MEMORY REFERENCE COUNT

510

I

I I

1 RESERVED I

I I

I

777 I

37

40

41

42

57

60

63

64

137

140

177

200

377

400

420

421

422

423

424

507

510

511

512

513

514

515

577

600

757

_
RESERVED

STANDARD PRIORITY INTERRUPT INSTRUCTIONS I

I -1
, FOUR CHANNEL BLOCK FILL WORDS I

i RESERVED I

FOUR DTEZO CONTROL BLOCKS I

EXECUTIVE PAGE 400 1 EXECUTIVE PAGE 401 I

! I

I
I
I

EXECUTIVE PAGE 776 EXECUTIVE PAGE 777

I

RESERVED

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

1 EXECUTIVE TRAP 3 TRAP INSTRUCTION I

I ~~ I
1 RESERVED I

TIME BASE I

PERFORMANCE ANALYSIS COUNT

INTERVAL COUNTER INTERRUPT INSTRUCTION

1 RESERVED I

EXECUTIVE PAGE 0 EXECUTIVE PAGE 1 I

I
I
I

I I
EXECUTIVE PAGE 336 EXECUTIVE PAGE 337

760

I RESERVED I

777 I

KLlO System Operations 3-21

Figures 3.1 and 3.2 show the organization of the virtual address spaces,
the process tables and the maps for both user and executive. The first
illustration gives the correspondence between the various parts of the ad-
dress spaces and the corresponding parts of the page maps. The second
illustration lists the detailed configuration of the process tables as deter-
mined by the hardware. Any table locations not used are reserved for fu-
ture use by the hardware or for use by the Monitor for software functions.
Note that the numbers in the half locations in the page map are the virtual
pages for which the half words give the physical substitutions. Hence loca-
tion 217 in the user page map contains the physical page numbers for
virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessi-
ble.16 The Monitor also specifies whether each page is public or not, writ-
able or not, and cacheable or not. The cache bit has an effect only if cache
use is enabled as the current cache strategy (03.2); in this case a 1 in the
cache bit allows loading the cache for the physical page when referenced as
this particular virtual page, whereas a 0 limits cache use to look but do not
load. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL I’AGE DATA FOR ODD VIRTUAL PAGE

A PIWS C PHYSICAL PAGE PHYSICAL PAGE
ADDRESS BITS 14-26

AlPW S ('I
ADDRESS BITS 14-26 3

012345 17 18 19 2021 22 23 35

Bits 5-17 and 23-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1s in the remaining “page use” bits
are as follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Public

W Writable (not write-protected)

S Software (not interpreted by the hardware)

c Cacheable

Page Table. If the complete mapping procedure described above were
actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this, the

l6 There is no requirement that the accessible space be continuous - it can be scattered
pages. The convention however is for the accessible space to be in two continuous virtual
areas, low and high, beginning respectively at locations 0 and 400000. The low part is
generally unique to a given user and can be used in any way he wishes. The (perhaps
null) high part is a reentrant area, which is shared by several users and is therefore
write-protected.

3-22 KLlO System Operations

pager contains a page table, in which it keeps a large assortment of map-
pings for both the executive and the current user. In a manner analogous to
the way the cache is organized to handle word groups of four, the pager
handles mappings in sets of eight. A page set is eight consecutively
numbered pages beginning with one whose number is a multiple of 10s.
Each page set consists of those pages whose mappings are contained in a
single word group in the page map. The 512 locations in the page table are
contained in sixty-four lines, each of eight locations holding the mappings
for the eight pages of a set. The lines are identified by the possible page-set
numbers in an address space, O-77, and the individual locations are ac-
cessed by means of the virtual page numbers, O-777. Each location has a
parity bit and the complete mapping (i.e. map half word) for the virtual
page that identifies it, including the physical page number and the five
page use bits. Associated with each line are a bit that indicates whether the
specified page set is in the user or executive address space, and a bit that
indicates whether the set of mappings is valid or not (it is not suitable to
clear a line as zero is a perfectly valid mapping, albeit for an inaccessible
page). The user and validity bits for all lines collectively constitute the
page table directory.

When the program references a page contained in a page set whose
mapping entry is tagged as valid and in the program address space, the 13-
bit physical number from the mapping location for the virtual page is used
as the left thirteen bits in the physical address for the memory reference
(provided of course that the reference is allowable according to the A, P and
W bits). If however the mapping set is invalid or is not for the correct
address space, the pager makes a memory reference (referred to as a “page
refill cycle”) to get the word group containing the mapping for the specified
virtual page from the page map. Even when there is no cache, all eight
mappings from the word group are entered into the page table, filling and
validating the line for the page set. This means the mappings will also be in
the table for subsequent references to pages in the same set, although some
may require a trap to the Monitor to make them accessible.

Note that all the mappings in an entire line of the page table are for a
single space, user or executive. Since most programs are written beginning
at page 0 (and often page 400 for a pure part), a mechanism is built into the
table to avoid excessive refills due to switching between user and executive.
In the numbers actually used to select lines in the table, the value of ad-
dress bit 19 is inverted in user address space. For a given page number, this
causes a difference of 200 in the line selection number for user space as
against executive space. Suppose the executive uses pages O-37 and
400-437, and also uses the per-process area, pages 340-377. Then if the
user is limited to pages O-137, 240-577 and 640-777, no conflict will ever
occur between them in the page table.

Page Failure

When for any reason the pager is unable to make a desired memory refer-
ence, an event known as a “page failure” occurs. For this the pager termi-
nates the instruction immediately, without disturbing PC or storing any

KLlO System Operations 3-23

results in memory or the accumulators, and executes a page fail trap.17 The
trap operation makes use of three locations in the user process table: it
places a page fail word in location 500, identifies the failed state of the
processor by placing the current PC word in location 501, and sets up the
flags and PC according to a new PC word in location 502. The processor
then resumes operation in the new state at the location now addressed by
PC. The page fail word supplies this information.

I/
b’AlLUKE

I-YPI: v
I

VIKTUAL AIlI)Kt:SS 1 0 I 567 8 18 3s

IF BIT I IS 0, BITS 1-7

HAVE THIS l,‘OKMAT

1234567

Whether the violation occurred in user or executive address space is indi-
cated respectively by a 1 or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether
or not a virtual address was given for the reference. If bit 1 is 1, bits 6 and 7
are indeterminate, and the number in bits 1-5 (2 20) indicates the type of
“hard” failure as follows.

21

22

23

25

36

Proprietary violation - an instruction in a public page has attempted
to reference a concealed page, or a public program has attempted to
fetch an instruction from a concealed page at an illegal entry point
(one not containing a PORTAL). The failure for an illegal entry
(which forces bit 8 to 0) occurs at the next reference, after the instruc-
tion is decoded, so the fail address is meaningless.

Page refill failure - this is a hardware malfunction. The pager found
no mapping for the virtual page in the page table, so it refilled the
line from the page map but still could not find it.

Address failure - this is caused by the satisfaction of an address
condition selected by the program. It is used for debugging purposes,
such as to find an instruction that is maliciously wiping out a memory
location, and is explained in 93.5 with the description of the DATA0
APR, instruction that sets it up. Bit 8 is forced to 0 by this failure.

Page table parity error - the pager has encountered a page table
mapping with incorrect parity.

AR parity error - the processor has detected incorrect parity in a
word read into AR from a storage module, the cache, or the E bus, and
has saved the word with correct parity in AC 0, block 7. When the
source is a storage module, the MB Parity Error flag is also set (CON1
APR, bit 27).

l7 A page failure that occurs during an interrupt instruction does not act this way. Instead
it places a page fail word in AC 2, block 7, and sets the In-out Page Failure flag (CON1
APR, bit 26), requesting an interrupt on the level assigned to the processor.

.._/

3-24 KLlO System Operations

-

37 ARX parity error - the processor has detected incorrect parity in a
word read into ARX from a storage module or the cache, and has
saved the word with correct parity in AC 1, block 7. When the source
is a storage module, the MB Parity Error flag is also set (CON1 APR,
bit 27).

If the failure is not one of these, then bits l-7 have the format shown
above, where A, W, S, P and C are simply the corresponding bits taken from
the mapping for the page specified by bits 18-26, and T indicates the type
of reference in which the failure occurred - 0 for a read-only reference, 1
for any reference involving writing. The type of reference per se implies
nothing about the cause of failure - it indicates only the reason the failed
reference was being made. Of course T being 1 in conjunction with W being
0 certainly implies the cause of failure.

For a page fail trap, the new PC word is set up by the Monitor to
transfer control to kernel mode. After rectifying the situation, the Monitor
returns to the interrupted instruction, which starts over again from the
beginning or from the stopping position in a multipart instruction. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores First Part Done. The mecha-
nism for making a correct return and the effects it produces on a BLT are
the same as for an interrupt, and are described under the special consid-
erations given at the end of §3.1.

Note that a soft failure18 seldom implies that anything is “wrong” -
unless a program has attempted to write in a truly write-protected area.
Consider a typical case where the Monitor has, for example, ten or twenty
pages of a user program in core; these would be the virtual pages indicated
as accessible. When the user attempts to gain access to a page that is not
there (a virtual page indicated in its mapping as inaccessible), the Monitor
would respond to the page failure by bringing in the needed page from the
disk, either adding to the user space or swapping out a page the user no
longer needs.

The same situation exists for writability. When bringing in a user
program, the Monitor would ordinarily indicate as writable only the buffer
area and other pages that will definitely be altered, distinguishing those
that must be revised on the disk at the end from those that can be thrown
away by setting the software bit. Then in response to a write failure, the
Monitor makes the page writable and sets the software bit to indicate to
itself that that page has in fact been altered and must be saved. When the
user is done, the Monitor need write back onto the disk only those pages for
which both W and S are set.

l8 In a soft page failure or page table parity error, the line containing the mapping for the
page is invalidated on the assumption the Monitor will change it. When the instruction is
restarted, the pager must go to the page map to get new information for the table.

KLlO System Operations 3-25

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to
determine how the pager would respond to a particular reference without
actually chancing a page failure. It may also be useful to determine where
a particular virtual page is in physical memory, e.g. to set up a channel
command list. For such purposes the processor has this instruction, which
unlike all other instructions described in this chapter, is not an IO instruc-
tion even though it is subject to the same restrictions.

MAP Map an Address

I 257 A I X Y 1 0 a9 12 13 14 17 18 35

If the pager is on and the processor is in kernel or user IO mode, map the
page number of the virtual effective address E and place the resulting
physical address and other map data in AC. The information loaded into
AC for a true mapping is of the form

SOPCl 00 PHYSICAL ADDRESS
I

0123456789 13 14 35

where bits 14-26 are the physical page number the pager supplies for E, bit
0 is 1 or 0 depending on whether the paging is done in user or executive
address space, and A, W, S, P and C are the page use bits from the mapping
as explained above. If however there is a parity error in the page table
entry, or the paging is done in user mode public but the page, while accessi-
ble, is private, AC receives

I/
I~'AlL.UKk: p (; 1

, 7‘Y I’l’

o.
PHYSIC'AI. ADI)Kl:SS

I 1

0 I S6789 I.3 14 35

The failure code can be only 21 or 25 for a proprietary or parity error,
where in the latter case those bits supplied by the mapping, 6, 7 and l&35,
are meaningless.

This instruction cannot be performed in a user program unless User In-
out is set, nor in a supervisor program. Instead of mapping the address, it
executes as an MUUO. If the pager is off, the result is undefined.

Notes. The instruction itself cannot fail because it does not actually
reference memory: it just translates the address and gets other mapping
data. However the effective address calculation could fail, and getting the
mapping may require a refill, in which a hard failure could occur. --

3-26 KLlO System Operations

3.4 TOPS-20 Paging and Process Tables

General information about the machine modes and paging procedures is
given in 01.3. Here we treat in detail the structure of the process tables and
certain hardware procedures - paging and page failures - a knowledge of
which is necessary for an understanding of executive programming. This
section covers these topics relative to a machine that uses TOPS20 pag-
ing,lg i.e. any KLlO running the TOPS-20 Monitor, or an Extended KLlO
running the TOPS-10 Monitor (microcode version 271 or greater). The pre-
vious section presents equivalent information for TOPS-10 paging. Instruc-
tions through which the Monitor controls the pager and otherwise exercises
overall management of the program environment are the same whether the
system uses TOPS-20 or TOPS-lo, and are described in $3.5.

With paging turned on, the program considers all of its dealings with
memory to be in its virtual address space, and interrupt functions and
instructions reference executive virtual address space except in special
cases where a function specifically calls for physical references. A virtual
address is any address given in virtual space except those for fast memory,
which are treated as physical. The pager maps only virtual addresses, but it
is involved in all references to the extent that it responds to error situa-
tions. Physical references include those made by the pager-microcode to
carry out-the mapping
interrupt instructions,
front end.

procedure, and also microcode references to retrieve
handle traps and UUOs, and service the meters and

NOTE

Hardware paging operations are inextricably intertwined
with the activities of the Monitor. The reader must be famil-
iar with both to be able to understand either fully.

Paging

All of memory both physical and virtual is divided into pages of 512 words
each. Physical memory can contain 8192 pages; its locations are specified
by 22-bit addresses, where the left thirteen bits (14-26) specify the page
and the right nine (27-35) the location within the page. The virtual mem-
ory space addressable by a program is 16,384 pages and requires 23-bit
addresses, where the left fourteen bits 113-26) are the extended page num-
ber. However the virtual space is usually regarded as composed of thirty-
two sections, each of 512 pages With this view, the extended page number
has two parts: the left five bits (13-17) specify the section, and the right
nine (18-26) specify the page. 2o Thus within each virtual section, locations

19 For additional information on this kind of paging, refer to “Storage organization and
management in TENEX”, by Daniel L. Murphy, AFIPS - Conference Proceedings,
Vol. 41, page 23, AFIPS Press, Montvale, NJ.

2o The reasons for holding to the section-page view are two. First, the page mapping proce-
dures are actually set up that way. Second, although large data structures can arbitrarily
cross section boundaries, the program cannot. For the program to get from one section to
another requires an explicit transfer of program control. PC has twenty-three bits, but it
counts in only the right eighteen: when going beyond the end of a section, it simply wraps
around to the beginning of the same section (from location 777777 to 0).

June 1982 KLlO System Operations 3-27

are specified by H-bit addresses, where ‘the left nine bits (18-26) are the
page number. The hardware maps each section of the virtual address space
into a part of the physical address space by transforming the B-bit ad-
dresses into 22-bit addresses.21 In this transformation the right nine bits of
the virtual address are not altered; in other words a given location in a
virtual page is the same location in the corresponding physical page. The
translation maps a virtual page into a physical page by substituting a 13-
bit physical page number for the g-bit virtual page number. The mappings
are different for each section by virtue of each section having a separate
page map. The procedure is carried out automatically by the pager, but the
maps that supply the necessary substitutions are set up by the kernel pro-
gram.

Pointers to the page maps for the various user and executive virtual
sections are contained in section tables that begin at location 540 in the
user and executive process tables. The pager contains two 13-bit registers
that the Monitor loads to specify the physical page numbers of these tables.
To retrieve a section pointer from a process table, the pager uses the appro-
priate base page number as the left thirteen bits of the physical address
and 540 plus the virtual section number as the right nine bits.22 The section
pointer must identify - either directly or indirectly - a physical page that
contains the page map for the section. Every pointer and mapping takes
one word, and since there are 512 pages in a section and 512 words in a
page, a page map for a section requires exactly one page.

Figures 3.3, 3.4 and 3.5 show the organization of the virtual address
spaces, the process tables and the section tables for both user and executive.
The first illustration gives the general layout of the process tables and
shows the relation between the virtual address spaces and section tables.
The second and third illustrations list the detailed configuration of the
process tables for the extended and single-section versions of the processor
respectively. Any table locations not used are reserved for future use by the
hardware or use by the Monitor for software functions.

Although the virtual space is always thirty-two sections of 256K by
virtue of the addressing capability of the instruction and indirect word
formats, the Monitor usually limits the actual address space for a given
program by defining only certain sections or pages as accessible. There is
no requirement that the accessible space be continuous - it. can be scat-
tered pages. The Monitor also specifies whether each section or page is
public or not, writable or not, and cacheable or not. To determine the map-
ping for a given virtual page, the microcode carries out a pointer evaluation
procedure that starts at the appropriate entry in the section table. If it is
discovered during this procedure that the section or page is inaccessible,
the page map or the referenced page is not in memory, or the program is
attempting to write in a write-protected page, the microcode traps to the
Monitor, which must handle the situation. A trap to the Monitor for a

21 The mapping procedure is of course applied only to storage module references, whether
cached or not. AC references, which can be made by any program, even when virtual page
0 is accessible, are made directly to fast memory and require no mapping.

22 In a single-section KLlO paging procedures are still as given here, but all addresses have
zero section numbers.

3-28 KLlO System Operations

Figure 3.3: TOPS-20 Virtual Address Space and Process Table Layout

USER
VIRTUAL
ADDRESS
SPACE

0
SECTION 0

777777

t
SECTION I

32
SECTIONS

205FsK
EACH

_ 18192Kl

__

SECTION 37
37777777

I
I

;

USER
PROCESS
TABLE

5L

I

I 128

,

SECTION RFFERENCES

TRAP 2.9

MUUO 2 16

INTERRUPT 3 1

METERS 3.6

DTEZO 3.7

EXECUTIVE
VIRTUAL
ADDRESS
SPACE

37777777
SECTION 37

EXECUTIVE
PROCESS
TABLE

I CHANNEL
LOGOUT AREAS

32

CONTROL BLOCKS
32

32

I
I

I

I
128

I

I

I

SHdOED AREIS
.URE RESERVED

KLlO System Operations 3-29

Figure 3.4: Extended TOPS-20 Process Table Configuration

USER PROCESS TABLE

01 I

417

420

421

422

423

424

425

426

427

430

431

432

433

434

435

436

437

440

RESERVED

NOTE.

ASTERISKS INDICATE

LOCATIONS WHOSE

“SE DIFFERS FROM

THOSE IN THE

SINGLE-SECTION

PROCESS TABLE

LISTED ON THE

NEXT PAGE.

ADDRESS OF LUUO BLOCK *

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION

USER TRAP 3 TRAP INSTRUCTION

MUUO FLAGS MUUO OP CODE, A *

MUUO OLD PC *

E OF MUUO *

MUUO PROCESS CONTEXT WORD

KERNEL NO TRAP MUUO NEW PC *

KERNEL TRAP MUUO NEW PC *

SUPERVISOR NO TRAP MUUO NEW PC *

SUPeRVISOR TRAP MUUO NEW PC *

CONCEALED NO TRAP MUUO NEW PC *

CONCEALED TRAP MUUO NEW PC *

PUBLIC NO TRAP MUUO NEW PC *

PUBLIC TRAP MUUO NEW PC *

i RESERVED I

477

500 PAGE FAIL WORD *

501 PAGE FAIL FLAGS *

502 PAGE FAIL OLD PC *

503 PAGE FAIL NEW PC *

504
USER PROCESS EXECUTION TIME

505

506
USER MEMORY REFERENCE COUNT

510 r-

I RESERVED
I

537

540 USER SECTION 0 I

I I

577 USER SECTION 37

600

1 RESERVED !

777 1 I

EXECUTIVE PROCESS TABLE

0
EIGHT CHANNEL LOGOUT AREAS

I EACH: 0 INITIAL CHANNEL COMMAND

1 GETS CHANNEL STATUS WORD

I 2 GETS LAST UPDATED COMMAND

37
3 RESERVED

40
RESERVED

41

42

1 STANDARD PRIORITY INTERRUPT INSTRUCTIONS I

57

60

1 FOUR CHANNEL BLOCK FILL WORDS
I

63

,: 1 RESERVED /

I FOUR DTEZO CONTROL BLOCKS

177

200

I
1 RESERVED

I I
420

421 EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

423 EXECUTIVE TRAP 3 TRAP INSTRUCTION

424

I I
, RESERVED

I
507

510

TIME BASE

511

512

PERFORMANCE ANALYSIS COUNT

513

514 INTERVAL COUNTER INTERRUPT INSTRUCTION

515

1 RESERVED I

537

540 EXECUTIVE SECTION 0

I I
577 EXECUTIVE SECTION 37

600

1 RESERVED I

777

3-30 KLlO System Operations

Figure 3.5: Single-section TOPS-20 Process Table Configuration

420

USER PROCESS TABLE EXECUTIVE PROCESS TABLE

RESERVED

NOTE:
ASTERISKS INDtCATE
LOCATIONS WHOSE
USE DIFFERS FROM
THOSE IN THE
EXTENDED PROCESS
TABLE LISTED ON
THE PRECEDING
PAGE.

421

422

423

424

425

426

421

430

431

432

433

434

435

436

437

RESERVED

500

501 PAGE FAIL WORD

502 PAGE FAIL OLD PC WORD

503 PAGE FAIL NEW PC WORD

504

USER PROCESS EXECUTION TIME
505

506 USER MEMORY REFERENCE COUNT

l

*

*

*

*

*

*

l

l

*

*

*

l

*

I

*

i RESERVED

537

540 USER SECTION 0

I I
577 USER SECTION 37

600 I

I RESERVED

777 I

37

40

41

42

I
57

60 I
I

63

64 I

I

137

140 I

177

200

420

421

422

423

424

507

510

511

512

513

514

515

537

540

577

600

EIGHT CHANNEL LOGOUT AREAS

EACH: 0 INITIAL CHANNEL COMMAND

1 GETS CHANNEL STATUS WORD

2 GETS LAST UPDATED COMMAND

3 RESERVED

RESERVED

STANDARD PRIORITY INTERRUPT INSTRUCTIONS

FOUR CHANNEL BLOCK FILL WORDS

RESERVED

i FOUR DTEZO CONTROL BLOCKS i

i
1 RESERVED

I

EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

EXECUTIVE TRAP 3 TRAP INSTRUCTION

i
i

, RESERVED I

8 I

I TIME BASE I

I EXECUTIVE SECTION 0

?

EXECUTIVE SECTION 37

I

1 RESERVED I

I

June 1982 KLlO System Operations 3-31

reason of this sort is produced by generating a “soft page failure.” But if
nothing is amiss, the procedure is carried out entirely by the microcode -
with no need to call the software - and it generates the mapping for the
specified virtual page. The procedure requires access to both the section
table and page map, to a memory status table in which the microcode keeps
track of the use made of the page map and the program-referenced page,
and perhaps to other predefined or software-defined tables as well. If the
complete procedure were carried out in every instance, the processor would
require at least five memory references for every one by the program. To
avoid this, each mapping generated by the procedure is placed in a page
table, and the pager makes its virtual-to-physical translations from the
mappings held in the table. Hence it is necessary to go through the evalua-
tion procedure only when the mapping is not available in the page table.
Since the objective of the procedure is to place a mapping in the table, it is
referred to as a “page refill.”

Page Table. A location in the page table contains a mapping entry in
this format.23

PHYSICAL PAGE
ADDRESS BITS 14-26

Each entry is identified as providing the physical page number for the
translation for a particular virtual page in a particular section and address
space (user or executive). A 1 in the A bit means the location contains a
valid mapping, and the page is therefore immediately accessible without
reguiring further action by the pager. Otherwise the rest of the entry is
meaningless,24 as A being 0 does not necessarily mean the page is inaccessi-
ble - only that a refill is required to determine its accessibility. The prop-
erties represented by 1s in the remaining “page use” bits are as follows.

Bit Meaning of a 1 in the Bit

P Public A 0 means the page is private.

dM Modified - and therefore writable without further ado. A refill pro-
duces a 1 in this bit if the page has already been modified or the
reference that caused the refill is for write and the page is writable.
A 0 does not imply that the page is write-protected, but simply that if
a write reference occurs, the pager must find out if it can be written.
Throughout this discussion, “write reference” means any reference
involving writing; “read reference” means read only.

W Writable. A refill sets this bit if the page is writable (i.e. not write-
protected).

23 In the engineering drawings and even in some Monitor documents, the A4 bit is labeled
“writeable” and the W bit is labeled “software”, which names are consistent with their
use in TOPS-10 paging.

24 The microcode invalidates a mapping entry by clearing it, but clearing would not be
sufficient were there no access bit, as zero is a legitimate mapping.

-

332 KLlO System Operations June 1982

,’

c Cacheable. This bit has an effect only if cache use is enabled as the
current cache strategy (03.2). In this case a 1 in the cache bit allows
loading of the cache for the physical page when referenced as this
particular virtual page, whereas a 0 limits cache use to look but do t

not load.

The page table is organized for page groups in a manner somewhat
analogous to the way the cache handles word groups. A page group is four
consecutively numbered pages beginning with one whose number is a mul-
tiple of 4. Each page group consists of those pages whose mappings are
contained in a single word group in the page map. The 512 locations in the
page table are contained in 128 lines, each of four locations for holding the
mappings for the four pages of a group. The lines are identified by the
possible page group numbers in a section, O-177, and the individual loca-
tions are accessed by means of the virtual page numbers, O-177. Each
location has a parity bit and the complete mapping resulting from a refill,
including the physical page number and the five page use bits. Associated
with each line is a bit that indicates whether or not the line is valid, a bit
that indicates whether the specified page group is in user or executive
address space, and five bits that identify the section containing the page
group?

When the program references a page, the 13-bit physical number from
the mapping for that page is used as the left thirteen bits in the physical
address for the reference provided all necessary conditions are satisified.
When the directory indicates the appropriate line is invalid or contains
mappings for a different section or address space, the pager changes and
validates the directory entry to match the desired reference but invalidates
the four locations in the line by clearing their access bits. It then executes a
refill to get the needed mapping into the table and tries the reference
again. If there is already an appropriate directory entry, but the individual
mapping is invalid or the reference is for writing and M is 0, the pager does
a refill to get a valid mapping or checks whether it can be revised to allow
the desired reference.

Note that all the mappings in a line of the page table are for a single
space, user or executive, and for a single section. Since most programs are
written beginning at page 0, a mechanism is built into the table to avoid
excessive refills due to switching between user and executive and among
sections. In the numbers actually used to select lines in the table, the value
of address bit 19 is inverted in user address space, and the value of address
bit 20 is inverted in an odd numbered section. For a given page number this
causes a difference of 200 in the line selection, number for user space as
against executive space, and a difference of 100 for an odd section as
against an even one. Suppose the executive uses pages O-77 and 400-744 in
section 1. Then if the user is limited to pages O-277 and 400-677 in any
even section, no conflict will ever occur between them in the page table. In

25 The user bits, validity bits, and section numbers for all lines collectively constitute the
page table directory. The Monitor invalidates the contents of the entire table by setting
all the validity bits in the directory.

KU0 System Operations 3-33

general a program should be organized so that it runs in a single section or
in nonconflicting parts of different sections for some significant amount of
time. Considerable yet unavoidable switching among sections can occur
however in handling large data structures, as when itI is nec,essary to
handle the elements of a very large array in a number of different orders.

Page Refill

The refill of a mapping into the page table is accomplished by evaluating
various types of pointers found in several kinds of tables. At some point in
the procedure the microcode must encounter a “page address” that identi-
fies the page map for the section, and it must end with a page address that
identifies the physical page corresponding to the referenced virtual page. A
page address has this format.

STORAGE
MEDIUM KESERVED PAGE NUMBER

1

12 17 23 35

If bits 12-17 are zero, the storage medium is memory: i.e. bits 23-35 supply
the number of a page that is in memory. If bits 12-17 are nonzero, the page
exists but is stored on some other medium - perhaps the disk - and the
microcode traps to the Monitor. A page address may be contained in a
pointer, in which case some of the bits at its left have defined uses. But
when the page address stands alone, bits O-11 of the word containing it can
be used arbitrarily by the software.

Special Tables. Besides the section tables in the process tables, a refill
makes use of two predefined tables: the special page-address table (WI’)
and the (core) memory status table (CST). These are software-determined
tables in memory, but their base addresses are held in reserved fast mem-
ory locations, rather than in hardware registers like those of the process
tables.*’

The special page-address table contains page addresses that specify
shared pages or special pages (e.g. those used as page maps or other soft-
ware-defined tables). The microcode accesses specific entries in the SPT by
indexing on a physical base address (bits 14-35) contained in AC 3, block 6.
The pointer format provides for an index of eighteen bits, so the SPT can
actually be as large as 256K (and it need not start on a page boundary).

Information about the use made by programs of the various physical
pages is kept in the memory status table. In every refill, unless the base
address is zero the microcode updates CST entries for both the page con-
taining the page map and the page referenced by the program. The entry
for a page is a full word, and is accessed by adding the page number to a
nonzero base address contained in AC 2. block 6. If memory is fully imple-
mented at 8192 pages, the CST occupies sixteen of them, but need not begin
on a page boundary. Note that the microcode does not manipulate CST
entries for the process tables, the SPT, nor the CST itself, unless they are
actually referenced by the program - in other words, unless the refill is
being performed for a program reference to one of the tables.

26 Remember that all memory tables defined by the pager are in physical address space. i.e.
they have physical base addresses. Of course. to load or access a table. the Monitor must
use paged virtual addresses. Note that if the base address is limited to a page number
(bits 14-26). the table must begin at a page boundary.

3-34 KLlO System Operations June 1982

The status of a physical page in memory is indicated by a CST entry in
this format.

S’I‘A’I I’ c‘OI)l’ 1 HI,SI:RVI-1) IM

0 8 35

The Monitor keeps a state code in bits O-8 of the entry; within the code, bits
O-5 represent the page age, which must be nonzero for the page to be
usable, whether it is the program-referenced page or the page map. Bits
O-5 being zero causes an age trap to the Monitor.27 The microcode updates
the entry by anding a CST mask word into it and oring a CST data word
into that result. These two words are held respectively in AC 0 and AC 1,
block 6. Bits 32-35 in them must be all 1s or all OS as illustrated in order to
preserve hardware information. A 1 in the M bit indicates the page has

MASK I111 1

0 31 32 35

CST MASK WORD

DATA 0000

0 31 32 35

CST DATA WORD

been modified since being brought into memory.28 The microcode sets this
bit in the entry for the referenced page - not that for the page map - if
the reference is write and the page is writable.

Indirect pointers make use of tables whose locations are defined en-
tirely by the Monitor. In a single refill, these may include one or more
secondary section tables or page maps. Each such table or map is deter-
mined by a page address and a g-bit index, and is therefore a single page.
Memory status is kept only for the page maps.

Pointers. The microcode evaluates two kinds of pointers: section
pointers and map pointers. The former are used in section tables and the
latter in page maps. Members of these two classes are identical in form but
differ enough in function so they must be treated separately. There are four
types of section and map pointers distinguished by a type code in bits O-2;
of these, three are access pointers, i.e. they allow access to the given section
or page. An access pointer has this format in its left seven bits.

27 Zero age usually means the page is being swapped in and is not yet available for refer-
ence. The Monitor can use part of a CST entry to record which processes use the page.

28 At the completion of a process, the Monitor checks the CST to determine which pages
have been modified and must be rewritten on the disk.

June 1982 KLlO System Operations 3-35

0 234 6
-

Every access pointer must have use bits for the section or page it repre-
sents. These bits, P, W and C, indicate whether the section or page is public,
writable or cacheable. Throughout the evaluation procedure the microcode
effectively ands these bits from one pointer to the next, so the final result
requires that the given characteristics be specified at every step. In other
words if P is 1 in the final pointer for the mapping, the page is public
provided the entire section was also specified as public by the original
section pointer, and “publicness” has been specified by every other pointer
encountered along the way. Every access pointer must also either contain a
page address or point to an SPT location that contains a page address.

Section Pointers. Entries in a section table are of these four types.2g

No Access

0 1 AVAILABLE ‘TO SOI:TWARt:

0 2

The section is inaccessible.

Immediate

[1 I/+[ICI RESERVED1 ‘;g;fj.f 1 RESERVED 1 PAGE NUMBER
OF PAGE MAP 1

0 234 6 I2 17 23 35

If bits 12-17 are zero, the page map is in the page specified by bits 23-35.
Otherwise the page map is not in memory.

An immediate pointer contains the page address of the page map.

Shared

RESERVE11 INI)EX TO SPT LOCATION CONTAINING;
PAGE ADDRESS 01; PAGE MAP

0 234 6 18 3.5

The page address of the page map is in the SPT at the location specified by
bits 18-35.

This pointer is used for a page map shared by a number of processes.
Switching to another map requires changing only the common SPT entry.

Indirect

3 [Plwj ICI
SECTION TABLE INDIiX TO SPT LOCATION CONTAINING PAGE

INIIEX ADDHI-% 01‘ ANOTHER SECTION TABLE

0 234 6 9 17 IS 35

In the SPT location specified by bits 18-35 is the page address of a second-

2s Type codes 4-7 are undefined.

3-36 KLlO System Operations

ary section table. The next section pointer to be evaluated is in that table at
the location specified by bits 9-17.

Indirect pointers are used for Monitor reference to per-job and per-
process areas. The pointers remain while the second section table is
swapped with the job or process, or the SPT entry is changed.

Map Pointers. Entries in a page map are of these four types.2g

No Access

0 1
1

AVAILABLI- TO SOFTWARE

0 2

The page is inaccessible.

Immediate

1 p w c RESERVED
STORAGE

RESERVED
PAGE NUMBER

MEDIUM FOR MAPPING

0 234 6 12 17 23 35

If bits 12-17 are zero, the physical page specified by bits 23-35 corresponds
to the referenced virtual page. Otherwise the referenced page is not in
memory.

An immediate pointer contains the page address for the mapping.

Shared

2 PW c Rf<SI-RVl:l)
INDEX TO SPT LOCATlON C‘ONTAINlNG

I’AGE AI)I)RI’SS FOR MAPPING

0 234 6 18 35

The page address for the mapping for the referenced virtual page is in
SPT at the location specified by bits 18-35.

the

This pointer is used for a physical page referenced as different virtual
pages by different programs. The Monitor can move the page simply by
changing the SPT entry.

Indirect

3 PW c PAGE MAP INDEX TO SPT LOCATION CONTAINING
INDE:X PAGE AI)I)RESS Ok’ ANOTHER PAGE: MAP

0 234 b 9 17 18 35

In the SPT location specified by bits 18-35 is the page address of a second-
ary page map. The next map pointer to be evaluated is in that map at the
location specified by bits 9-17.

KLlO System Operations 3-37

Y Figure 3.6: TOPS-20 Paging Pointer Evaluation

CST

4
123 -I= r 00 PAGE

CST Q PAGE MAP

FOR

CST Q PAGE 401

SECONDARY
PAGE MAP

CAUTION

f ._- Indirect page pointers cannot be used for references made by
interrupt instructions.

Refill Procedure. If the page table lacks a valid mapping for a refer-
ence, the pager must evaluate section and map pointers to get the desired
mapping. The procedure begins with the pointer for the section from the
process table, and the pager follows the trail laid by the various pointers, as
illustrated in Figure 3.6. At any step the microcode traps to the Monitor if
it encounters a no-access pointer or a page address that indicates the page
is not in memory. The first part of the procedure, which may go to the SPT
or indirectly through it to other section tables, evaluates section pointers to
arrive at the page address of the page map. Using this physical page num-
ber as the left thirteen bits of an address and the number of the referenced
virtual page as the right nine bits, the second part of the procedure re-
trieves a map pointer and evaluates it. This part may also go to the SPT or
indirectly through it to other page maps to arrive at a page address for the
mapping. Unless an age trap intervenes, or the CST base register is zero,
memory status is updated along the way for any page maps used. If the
reference can be made and there is no age trap for the referenced page, its
status is updated including setting the M bit if the program is writing. The
microcode then constructs the desired mapping, places it in the page table,
and returns to the waiting reference.

The mapping data is constructed from the result of the pointer evalua-
tion, including the running evaluation of the use bits, and has the format
illustrated in the discussion of the page table. The microcode always places
a 1 in the A bit to indicate that the virtual page is accessible and this is a
valid mapping for it. P and C are simply the result of anding the P and C
bits of the various pointers. M however is not. A refill sets up M and W
according to the type of reference and the characteristics of the referenced

page.

Circumstances”” MW Effect

Read reference, page not writable.

Read reference, page writable but not
yet modified (according to CST).

Page writable, write reference or
page already modified.

00

01

11

An attempt to write will fail.

An attempt to write will succeed,
after the mapping is revised.

Sets M in CST entry; an attempt to
write will succeed.

Page Failure

When for any reason the pager is unable to make a desired memory refer-
ence, or an extended effective address calculation encounters an incorrectly
formatted indirect word, an event known as a “page failure” occurs. For
this the microcode terminates the instruction immediately, without dis-

so The missing circumstance produces a page failure.

June 1982 KLlO System Operations 3-39

turbing PC or storing any results in memory or the accumulators, and
executes a page fail trap.“’ The trap operation makes use of certain loca-
tions in the user process table depending on whether the KLlO is extended.

Extended KLlO

The trap places a page fail word
in location 500, identifies the
failed state of the processor by
placing the current flag-PC dou-
bleword in locations 501 and
502, sets up PC according to a
new value in location 503, and
clears the flags (placing the pro-
cessor in kernel mode).

Single-section KLlO

The trap places a page fail word
in location 501, identifies the
failed .state of the processor by
placing the current PC word in
location 502, and sets up the
flags and PC according to a new
PC word in location 503.

The processor then resumes operation in the new state at the location now
addressed by PC.

The page fail word supplies this information.

UI FAILURE
TYPE IV1 I VIRTUAL ADDRESS

I

0 1 5678 12 13 35

IF BIT 1 IS 0, BITS l-7
HAVE THIS FORMAT

1234567

Whether the violation occurred in user or executive virtual address space is
indicated, respectively, by a 1 or 0 in bit 0; and a 1 or 0 in bit 8 indicates
whether or not a virtual address was given for the reference. If bit 1 is 1,
bits 6 and 7 are indeterminate, and the number in bits l-5 (2 20) indicates
the type of “hard” failure as follows.

21 Proprietary violation - an instruction in a public page has attempted
to reference a concealed page, or a public program has attempted to
fetch an instruction from a concealed page at an illegal entry point
(one not containing a PORTAL). The failure for an illegal entry
(which forces bit 8 to 0) occurs at the next reference, after the instruc-
tion is decoded, so the fail address is meaningless

23 Address failure - this is caused by the satisfaction of ‘an address
condition selected by the program. It is used for debugging purposes,

31 A page failure that occurs during an interrupt instruction does not act this way. Instead
it places a page fail word in AC 2. block 7. and sets the In-out Page Failure flag (CON1
APR, bit 261, requesting an interrupt on the level assigned to the processor.

3-40 KLlO System Operations June 1982

24

25

27

36

37

such as to find an instruction that is maliciously wiping out a memory
location, and is explained in 03.5 with the description of the DATA0
APR, instruction that sets it up. Bit 8 is forced to 0 by this failure.

Illegal indirect - an extended effective address calculation has en-
countered an indirect word with 11 in bits 0 and 1.

Page table parity error - the pager has encountered a page table
mapping with incorrect parity.

Illegal address - a memory reference has supplied an address whose
section number is greater than 37. Bit 8 is forced to 0 by this failure.

AR parity error - the processor has detected incorrect parity in a
word read into AR from a storage module, the cache, or the E bus, and
has saved the word with correct parity in AC 0, block 7. When the
source is a storage module, the MB Parity Error flag is also set (CON1
APR, bit 27).

ARX parity error - the processor has detected incorrect parity in a
word read into ARX from a storage module or the cache, and has
saved the word with correct parity in AC 0, block 7. When the source
is a storage module, the MB Parity Error flag is also set (CON1 APR,
bit 27).

If the failure is not one of these, then bits l-7 (if meaningful) have the
format shown above, where A, M, W, P and C are simply the corresponding
bits taken from the mapping for the page specified by bits 13-26, and T
indicates the type of reference in which the failure occurred - 0 for a read-
only reference, 1 for any reference involving writing. The type of reference
per se implies nothing about the cause of failure - it indicates only the
reason the failed reference was being made. Moreover the possible configu-
rations for these bits are quite limited. A soft page failure can result only
from actions taken in a refill or writability check. A valid page table map-
ping can require action by the pager only if M is 0 in a write reference.
Hence in a soft failure resulting from a valid mapping, bits O-8 of the page
fail word are of the form

uo 100 1 PC1

012345678

for a write failure. When no
the form

valid mapping is found, the page fail bits have

uOOOOT001

012345678

where for a write failure, T must be 1.
For a page fail trap, the extended KLlO automatically switches to ker-

nel mode, and in the unextended version the Monitor should set up the new
PC word for that action. After rectifying the situation, the Monitor eventu-
ally returns to the interrupted instruction, which starts over again from the

KLlO System Operations 3-41

beginning or from the stopping position in a multipart instruction. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores First Part Done. The mecha-
nism for making a correct return and the effects it produces on a BLT are
the same as for an interrupt, and are described under the special considera-
tions given at the end of 03.1. Before returning to the failed instruction, the
Monitor must invalidate the mapping for the page and revise the pointers
for the new situation. Then when the instruction is restarted, the pager will
do a refill to get the new, correct mapping.

A no-access pointer may well imply that the section or page simply
does not exist. Otherwise a soft failure seldom implies that anything is
“wrong.” Consider a typical case where the Monitor has, for example, ten or
twenty pages of a user program in memory. When the user attempts to gain
access to a page that is not there (i.e. for which the refill encounters a not-
in-memory page address), the Monitor would respond to the failure by
bringing in the needed page from the disk, either adding to the user space,
or swapping out a page the user no longer needs or has not used recently.
Similarly a process using several sections may have only one in core at a
time. While swapping is in progress, the Monitor runs some other user,
returning to the interrupted job when the requested page is available.

The same situation exists for writability. Keeping track of modified
pages is handled by the refill procedure using the memory status table. But
a page may be write-protected because is it shared by a number of proc-
esses, wherein a change made by one might not be wanted by the others.
Thus in response to a write failure, the Monitor might make a separate
writable copy of the page for the sole use of the process that wishes to
modify it.

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to
determine how the pager would respond to a particular reference without
actually chancing a page failure. It may also be useful to determine where
a particular virtual page is in physical memory, e.g. to set up a channel
command list. For such purposes the processor has this instruction, which
unlike all other instructions described in this chapter, is not an IO instruc-
tion even though it is subject to the same restrictions.

MAP Map an Address

I
257 A I X Y

0 89 12 1314 17 18 35

If the pager is on and the processor is in kernel or user IO mode, map the
(extended) page number of the virtual effective address E and place the
resulting physical address and other map data in AC. The information
loaded into AC for a true mapping is of the form

-

3-42 KLlO System Operations

lulol 1 ~lWlOlPlCl1I 00 I PHYSICAL ADDRESS

01 23456789 13 14 35

where bits 14-26 are the physical page number the pager supplies for E, bit
0 is 1 or 0 depending on whether the paging is done in user or executive
address space, and M, W, P and C are page use bits from the mapping as
explained above. Failure of the instruction to generate a valid mapping is
indicated by AC receiving

FAILURE
TYPE 00

I
UNDEFINED

I

0 I 56 89 13 14 35

where bits 6-8 are undefined, and the failure code can be 21, 25, 27, 36 or
00 (refer to the preceding discussion of page failures). Of these, 25 and 36
represent what are effectively real failures: a parity error in the page table
entry or in a word retrieved from memory in a refill. The others represent
failures that would occur were the instruction actually to reference memory
rather than simply requesting a mapping: 21, an attempt by a public pro-
gram to reference a private page; 27, an illegal address; and 00, an age, no-
access or not-in-memory trap in a refill.

This instruction cannot be performed in a user program unless User In-
out is set, nor in a supervisor program. Instead of mapping the address, it
executes as an MUUO. If the pager is off, the result is undefined.

Notes. The instruction cannot actually fail, because regardless of what
happens, the refill or page fail microcode returns to it instead of trapping to
the Monitor. The effective address calculation done for it could fail how-
ever.

3.5 Memory Management

In order properly to manage memory, the kernel program must select the
kind of paging and the cache strategy, set up process tables and page maps
for itself and the various users, oversee the operation of the page table, and
select the fast memory block to be used by each program (usually block 0
for itself). At any given time, accumulator, index register and fast memory
references are made to that AC block that is assigned as “current.” Given a
particular processor mode (user or executive, public or private) and an ap-
propriate process table and page map, the Monitor effectively defines the
address space for a process (which may be itself) by specifying the base
address for the process table and selecting the current AC block.

When a user program calls the Monitor it is usually to request some
activity, which may often require the executive to gain access to the user
address space. To facilitate the crossover from one address space to another,
the same instruction through which the Monitor assigns its own current
AC block also allows assignment of an AC block and section for the “previ-
ous context” - i.e. the context of the process that made the call. These
quantities, together with flags that indicate the mode of the caller, allow
execution of instructions in the previous context (more about this subject

KLlO System Operations 3-43

later). At any point in time, the previous context is essentially the circum-
stances in which the previous process was running. Note that the previous
context need not be the user; the same techniques can be exploited follow-
ing a call from one level of the Monitor to another.

For initial setup, the kernel program must be cognizant of certain fun-
damental characteristics that can vary from one system to another. For this
purpose the instructions for basic management include not only those that
address the pager, but also one that addresses the processor to discover
what those characteristics are.

The device code for the pager is 010, mnemonic PAG.33

APRID Arithmetic Procesor Identification

I 70000 I x Y 1
0 12 13 14 17 18 3s

Read the microcode version number, the processor serial number, and a
listing of the fundamental characteristics of the system into location E as
shown.

MICROCODE OPTIONS MICROCODE VERSION NUMBER
TOPS-20 EXTENDED EXOTIC I
PAGING ADDRESS PicODE

0 I 2 ' 3 4 5 ' 6 7 B 9 IO I1 ' 12 13 14 ' 15 16 17

HARDWARE OPTIONS PROCESSOR SERIAL NUMBER
EXTENDED MASTER

50Hr CACHE CHANNEL\ KLIO j 0% 1

18 19 20 ' 21 22 23 24 25 26 ' 27 28 29 I 30 31 32 ' 33 34 35

0 The microcode implements paging for the TOPS-20 Monitor; 0 indi-
cates TOPS-10 paging.

1 The microcode handles extended addresses.

2 The microcode differs in some way from the standard version.

18 Line power frequency is 50 Hz rather than the standard 60 Hz.

21 The processor is an extended KLlO; 0 indicates a single-section KLlO.
The microcode options must of course be consistent with the processor

type.

22 The system has a master oscillator, which is available as an external
clock source. In a system containing MOS memory, the software must
select this source (CPU clock source 2) from the PDP-11.

33 BLKI PAG, is unassigned and executes as an MUUO.
-,

3-44 KLlO System Operations

CON0 PAG, Conditions Out, Pager

70120 r x

0 12 13 14 17 18

Y

35
-

Set up the system-oriented characteristics of the pager according to the
effective conditions E as shown.

CACHE
STRATEGY

TOPS-20 ENABLE
PAGING PAGER

EXECUTIVE BASE ADDRESS (PAGE NUMBER)

LOOK 1 LOAD

I8 19 20 21 22 23 ' 24 25 26 I 27 28 29 ' 30 31 32 ' 33 34 35

Load bits 23-35 into the executive base register to select the executive
process table. If bit 22 is 1 enable overflow trapping and enable the pager
for the type of paging selected by bit 21: 1 TOPS-20, 0 TOPS-lo. The
paging selected must be the same as that implemented by the microcode as
indicated by APRID bit 0. A 0 in bit 22 prevents traps and disables paging
so all memory references are to physical locations unpaged.34

CAUTION

Paging can be disabled only for executive mode. A user mode
program will not run correctly unless the pager is turned on.

Select the cache strategy according to bits 0 and 1 as follows:

ox Disable the cache.

10 Look for all references, but do not load physical references; for virtual
references act as directed by the cache bit in the mapping for the

page.

11 Make complete use of the cache for physical references; for virtual
references act as directed by the cache bit in the mapping for the

page.

Invalidate the entire page table by setting the invalid bits in all lines.

CONI PAG, Conditions In, Pager

L 70124 / x Y I

0 12 13 14 17 18 35

Read the system status of the pager into the right half of location E. The
information read is the same as that supplied by a CONO.

34 Note that disabling the pager does not mean there can be no page failures as these can be
caused by conditions having nothing to do with paging, i.e. with translking virtual to
physical addresses.

KLlO System Operations 3-45

DATA0 PAG, Data Out, Pager

70114 Y I
0 12 13 14 17 18 35

Set up the process-oriented elements of the pager according to the contents
of location E as shown.

SELECT LOAD
SEL,E,CT PREVIOUS USER
BLOCKS CONTEXT BASE

SECTION ADDRESS

CURRENT
AC BLOCK

PREVIOUS
CONTEXT
AC BLOCK

PREVIOUS CONTEXT
SECTION

0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 ' I5 16 17

DO NOT
UPDATE
ACCOUNTS

USER BASE ACDRESS (PAGE NUMBER)

18 19 20 ' 21 22 23 1 24 25 26 ' 27 28 29 ' 30 31 32 1 33 34 35

Bits O-2 are change indicators for parts of the data word: when a bit is 0,
the corresponding part of the word is ignored, and the equivalent value
supplied by a previous DATA0 remains in effect.

If bit 0 is 1, select as the current and previous context AC blocks those
specified by bits 6-8 and 9-11, respectively. If bit 1 is 1, select as the
previous context section that specified by bits 13-17 (which must be zero in
a single section processor). If bit 2 is 1, perform these functions:

If bit 18 is 0, update the user accounts as explained in 63.6.

Load bits 23--35 into the user base register to select the user process
table.

Invalidate the entire page table by setting the invalid bits in all lines.

DATAI PAG, Data In, Pager

70104 I x Y 1
0 12 13 14 17 18 35

Read the process status of the pager into location E. The information read
is in the same format as that supplied by a DATA0 (bits O-2 are 1s and bit
18 is 0). Note however that only the AC block designations and user base
address are necessarily the same information supplied by a previous
DATAO. When an MUUO stores its own context as given by the DATA0
that set up the process containing it, it changes the designation of the
previous context section to that in which the program is currently running.
Hence following a call by an MUUO, a DATA1 PAG, in the called program
will see as the previous context section that specified by PC at the time the
MUUO was performed.

_-

3-46 KLlO System Operations

C&APT ’ Clear Page Table Entry

0 12 13 14 17 18

TOPS-20

(BLKO PAG,)

35

TOPS-l 0

Invalidate the page table map-
ping entry for the page refer-
enced by E.

Invalidate the page table line
(eight entries) containing the
mapping for the page referenced
by E.

At power turnon the contents of the cache and page table are indeter-
minate, the processor is in kernel mode, paging is disabled, the cache is off,
and the current AC block is 0 by default. After the front end loads the
microcode, it then loads the initializing kernel program. This program,
running unpaged in physical memory, should give an APRID to determine
system characteristics and an SWPIA to invalidate the cache. The unpaged
program ends with a CON0 PAG, that selects the cache strategy, selects
and enables paging, specifies the executive base address, and invalidates
the page table. From this point the kernel program runs paged and must
set up the first user or users, loading the user process tables and page maps,
bringing in whatever parts of user programs and data that are consistent
with good working-set management, and setting up the timing and ac-
counting meters. Finally the Monitor gives a DATA0 PAG, to assign the
base address and current AC block for the first user, and then transfers
control to the user program via an XJRSTF or JRSTF. The initial DATA0
PAG, should have a 1 in bit 18 to inhibit updating accounts before any user
has run.

On a call from the user via an MUUO, give a DATA1 PAG, to deter-
mine the context of the user, i.e. his AC block and section. Then give a
DATA0 PAG, that assigns block 0 as current for the Monitor, assigns the
user AC block and section as previous context for accessing user space, but
leaves the base address alone so the right paging is still available for such
access. To return to the same user, reassign the AC block without changing
the base address. Leaving the base address alone also avoids unnecessary
updating of user accounts Note that on the transfer to a user program no
previous context values need be given as the user cannot employ PXCTs.
For switching from one user to another, give a DATA0 PAG, that updates
the first user’s accounts in his process table, as specified by the old base
address, and then loads a base address for the new user. The transfer to a
user is done with a JRSTF or XJRSTF; the latter also restores the previous
context section when used to return from a higher to a lower level within
the executive.

The usual procedure for administering AC blocks is to assign block 1 to
all users and assign two or three blocks for the sole use of interrupt
routines. Suppose the assignments are: block 0 for the Monitor, block 1 for
all users, block 2 for the highest priority interrupt level, block 3 for the

June 1982 KLlO System Operations 3-47

second highest level, and block 4 for all other levels. Then in no circum-
stances is it necessary to determine which block to save, and interrupt
routines on the highest, second highest and lowest levels need not save any.
Moreover the Monitor need not even store block 1 when it takes control
from a user temporarily. When switching from one user to another, the
Monitor usually stores the first user’s accumulators in his process table or
shadow area - this is locations O-17 in user virtual page 0, an area not
generally accessible to the user at all - and loads the new user’s accumula-
tors from his process table or shadow area, where they were stored after the
last time the new user ran.

On a change from one process to another the entire page table must be
invalidated, but this is done automatically by the instruction that assigns
the new user base address. If the system uses shared or indirect pointers, or
several virtual page numbers point to the same physical page, then the
table must be invalidated whenever a page is removed from memory or a
pointer is removed from a user section table or page map. On the other
hand deletion of a page with a unique mapping requires only that a CLRPT
be given to invalidate the line containing it. In multiprocessor operation all
page tables must be cleared whenever one is. CST entries can be used to
communicate paging information from one processor to another.

Previous Context Execute

Ordinarily an instruction in a user program is performed entirely in user
address space, and an instruction in the executive program is performed
entirely in executive address space. But to facilitate communication be-
tween Monitor and users, the executive can execute instructions in which
selected references cross over the boundary between user and executive
address spaces. This feature is implemented by the previous context exe-
cute, or PXCT, instruction. The mnemonic PXCT is for convenience only
and has no meaning to the assembler; it is used simply to indicate an XCT
with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a
program in the current context, some of the references made by the exe-
cuted instruction can be in the previous context. A PXCT can be given only
in executive mode, but the previous context may be the user, as following a
call to the Monitor by the user. The previous context can however be the
executive, to allow communication between one level of the executive pro-
gram and another, as when the Monitor gives an MUUO to itself. (Note: it
is not intended that PXCT be used by the Monitor for unsolicited references
to a user program.)

It is very important to understand just which operations are affected by
a PXCT and which are not. The only difference between an instruction
executed by a PXCT and an instruction performed in normal circumstances
is in the way certain of its memory and index register references are made.
To work as a PXCT, and XCT must be given in executive mode, and the bits
in its A field (g-12) must not all be 0 (in user mode A is ignored). But there
is otherwise no difference in the way the XCT itself is performed: every-
thing in the PXCT is done in the current (executive) context, and the in-

-

KLlO System Operations June 1982

struction to be executed by the XCT is fetched in the current context. More-
over in the executed instruction, all accumulator references (specified by
bits 9-12 of the instruction word) are in the current context. (Remember
that the executive can always access a user accumulator simply by address-
ing it as a fast memory location.) If the instruction makes no memory
operand references, as in a shift or immediate mode instruction, and it has
no indexing or indirection (i.e. the instruction word gives E directly), then
its execution differs in no way from the normal case. The only difference is
in memory and index register references.

The previous context is specified by four quantities. Following a call by
an MUUO, the section in which the calling program was running (its PC
section) and the fast memory block assigned to it appear as the previous
context section and current context AC block in the word read by a DATA1
PAG,. For the called program, these two quantities can then be assigned as
the previous context by a DATA0 PAG,. The current AC block of the call-
ing program also appears in the process context word supplied by the
MUUO. Various levels of the Monitor may all use fast memory block 0; or a
separate block may be assigned to that part of the Monitor that uses PXCTs
in handling MUUO calls from other parts of the Monitor.

/
i..

Just as the current mode is indicated by the User and Public flags, the
mode in which the calling program was running is indicated by Previous
Context User and Previous Context Public.36 At a call these flags may be
set up automatically or they may be set up by a flag-PC doubleword or a PC
word. Note that the restrictions on references made in the previous context
are those of the previous context - not those of the context in which the
PXCT is given - with the single exception that if the current program is
running in section 0, the previous context is also limited to section 0. Sup-
pose the executive executes an instruction that references the concealed
user area. Such a reference would fail if Previous Context Public were set.

Which references in the executed instruction are made in the previous
context is determined by 1s in the A portion of the PXCT instruction word
as follows.

Bit References Made in Previous Context if Bit is 1

9

10

11

Effective address calculation of instruction, including both instruc-
tion words in EXTEND (index registers, address words by indirec-
tion); also EXTEND effective address calculation of source pointer if
bit 11 is 1 and of destination pointer if bit 12 is 1

Memory operands specified by E, whether fetch or store (e.g. PUSH
source, POP or BLT destination); byte pointer; second instruction
word in EXTEND

Effective address calculation of byte pointer; source in EXTEND; ef-
fective address calculation of EXTEND source pointer if bit 9 is 1

36 Previous Context User and Previous Context Public are in the same flag bits that are
used for User In-out and Overflow in user mode. The former has no meaning in executive
mode, and the latter is not really necessary as the executive program is not ordinarily
interested in performing extensive mathematical procedures.

KLlO System Operations 3-49

12 Byte data; stack in PUSH or POP; source in BLT; destination in
EXTEND; effective address calculation of EXTEND destination
pointer if bit 9 is 1

Previous context referencing is useful and reasonable in some instruc-
tions but inapplicable to others There is no trap of any kind, and the effect
of using the feature with an instruction to which it does not apply is simply
undefined.

Applicable Inapplicable

Move, XMOVEI
EXCH, BLT, XBLT
Half word, XHLLI
Arithmetic
Boolean
Double move
CAI, CAM
SKIP, AOS, SOS
Logical test
PUSH, POP, ADJSP
Byte
MOVSLJ (extended KLlO only)
MAP

LUUO, MUUO
AOBJN, AOBJP
JUMP, AOJ, SOJ
JSR, JSP, JSA, JRA, JRST
PUSHJ, POPJ
XCT, PXCT
Shift-rotate
String (except MOVSLJ)
IO

Note that no jumps can use previous context referencing. Even among
the instructions to which such referencing is applicable, only a limited
number of the sixteen possible bit combinations is useful or meaningful.
Doing an effective address calculation in the previous context (selected by
bit 9 or 11) makes sense only if the corresponding data access is also in the
previous context (as selected by bit 10 or 12 except 11 or 12 in EXTEND).
Only these combinations are permitted.

Instructions 9 10 11 12 References in Previous Context

General 0 1 0 0
1 1 0 0

Immediate 1 - 0 0

BLT 0 0 0 1
0 1 0 0
0 1 0 1
1 1 0 0
1 1 0 1

XBLT 0 0 1 0
0 0 0 1
0 0 1 1

Data
E, Data

E (no data access)

Source
Destination
Source, destination
E, destination
E, source, destination

Source
Destination
Source, destination

‘-

3-50 KLlO System Operations June 1982

Stack

f ._.-. :

0 0 0 1
0 1 0 0
0 1 0 1
1 1 0 0
1 1 0 1

Byte 0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

Stack
Memory data
Memory data, stack
E, memory data
E, memory data, stack

Data
Pointer E, data
Pointer, pointer E, data
E, pointer, pointer E, data

MOVSLJ 0 0 0 1 Destination
(extended KLlO only) 1 0 0 1 E (= Y), destination pointer, destination

0 0 1 0 Source
1 0 1 0 E (= Y), source pointer, source
0 0 1 1 Source, destination
1 0 1 1 E (= Y), pointers, source, destination

(-._

Execution of a BLT by a PXCT is limited to these three cases:

Where all operations, regardless of context, are in section 0.

Where the previous context fast memory block is being saved in or
restored from the current context, provided all addresses are local and
thus in the same section. (Remember that regardless of context a local
address in the range O-17 always refers to fast memory. Hence an AC
block can never be saved in or restored from the first sixteen storage
locations in any section.)

Where all operations are confined to a single section in the previous
context, as would be the case when clearing a user page.

In all other circumstances XBLT must be used instead.

Address Debugging

The address failure, or address break, feature of the pager implements the
traditional program debugging technique of catching a particular type of
memory reference to a selected location (it does not catch fast memory
references). It may be used to determine whether a given program is modi-
fying a particular location, is executing a particular piece of code, or is
simply using a particular block of data. This instruction uses the processor
device code to specify the circumstances in which a break shall occur.

DATA0 APR, Data Out, Arithmetic Processor

0 12 13 14 17 18 35

Select the break address and the break conditions according to bits 9-35 of
location E as shown (a 1 in a condition bit selects the condition indicated, a
0 makes no reference selection or selects the opposite address space).

June 1982 KLlO System Operations 3-51

. / .
‘I r=

I RESERVED CONDITION BREAK ADDRESS 1 9 ra 13 35

The break conditions selected by 1s in bits 9-12 are as follows.

9

10

11

1.2

A normal fetch of an instruction in the program under control of PC.

Any reference that reads except the normal fetch of an instruction.
This includes retrieval of operands, address words in an effective ad-
dress calculation, or an instruction to be executed by an XCT or user
LUUO.

Any reference that writes.

A reference made in user virtual address space (0 selects executive
space). The break mechanism operates only for virtual address space.
It does not catch microcode physical references, such as to the process
tables.

Whenever the processor attempts one of the selected types of reference
to the location specified by the break address in the selected virtual address
space, a page failure results3’ unless the Address Failure Inhibit flag is set.
This flag, which is bit 8 of the program flags and can be set only by an
instruction that restores them, prevents an address failure during the next
instruction - the completion of the next instruction automatically clears
it. If an interrupt or trap intervenes, the flag has no effect and is saved and
cleared if the flags are saved with PC. If it is not saved, it affects the
instruction following the interrupt or trap. Otherwise it affects the instruc-
tion following a return in which it is restored with PC. Using the inhibit
flag, the Monitor can return to a user instruction that caused an address
failure and “get by it.”

Since this feature is entirely under the control of the above IO instruc-
tion, it can be used quite flexibly for the executive to debug its own
routines, or to debug a single user program without bothering either the
executive or other users, The break conditions in effect at any time can be
ascertained by giving this instruction.

3’ Executive conditions also catch virtual references in interrupt functions, but the page
failure sets the In-out Page Failure flag instead of resulting in a trap for an address
failure.

-

3-52 KLlO System Operations

DATAI APR, Dats In, Arithmetic Processor

4

70004 I x Y 1
0 12 13 14 17 18 35

Read the current break conditions into bits 9-12 of location E. The informa-
tion read is the same as that supplied by the last DATAO. (Note that the
break address cannot be read.)

3.6 Timing and Accounting

The processor includes a subsystem with elements for keeping track of
time, use of system facilities, and use of individual system features. One
element is a standard la-bit interval counter that is set up by the program
to interrupt when the count reaches a preset value. The others are meters
for keeping a 59-bit count, wherein only the low order sixteen bits are
implemented in hardware. In each case the actual counting is done in a 16-
bit hardware counter, while the overall count is kept in a doubleword in a
process table. A count is updated from its counter by a procedure that is
performed periodically by the microcode and whenever appropriate to an
operation requested by the software. In the update procedure the contents
of a counter are added into the corresponding count and the counter is
cleared. Whenever the microcode checks for interrupt requests it updates
any count whose counter is more than half full, i.e. whose MSB is 1. The
current user accounts are generally updated when the Monitor switches to
a new user.

A doubleword count is a 59-bit unsigned quantity whose format and
relationship to the hardware counter are as shown here. The entire first
word comprises the high order thirty-six bits, and the low order twenty-

EVEN NUMBERED WORD ODD NUMBERED WORD

[
HIGH ORDER PART OF COUNT 101 LOW ORDER PART OF COUNT RESERVED

I I
0 35 0 I I 23124 35

I
36 9 : 58,

\ I

I

COUNTER I

43 58

three are in bits l-23 of the second word.3s Reserving bits for expansion at
the low order end guarantees format compatibility with future machines
that may be much faster (and therefore require bits for counting smaller
time units). Altogether there are four meters that use this counter-
doubleword format. One is a straightforward time base that counts at 1
MHz. Two keep track of process execution time and number of memory
references for purposes for user accounting. Last is a mechanism for analyz-
ing system performance by investigating the use of individual system fea-

38 Remember, it is a property of twos complement arithmetic that the sign can be used as an
extra magnitude bit in an unsigned number. But since the hardware is set up for signed
arithmetic, bit 0 of any lower order word must be skipped.

KLlO System Operations 3-53

tures, either by counting the number of times particular events occur or
measuring the duration of time particular procedures are in progress.

The program controls the various subsystem elements through two sets
of IO instructions using device codes 20 and 24, mnemonics TIM and
MTR.“’ Ip general the meter code is for handling the accounting meters and
the timer code is for the other elements, but the MTR conditions are for
both. Data instructions read updated doubleword counts, but affect neither
the counts nor the counters. Condition bits (in a CON01 directly affect only
the 16-bit hardware counters. Of course a counter being enabled does mean
updating of the doubleword count will probably occur. But to reset a count,
the program must not only clear the hardware counter but separately clear
the corresponding pair of locations in the process table.

System Timing

For regular system use, the processor provides a time base and an interval
counter: The time base is a doubleword count (of the type described above)
kept in locations 510 and 511 of the executive process table. It counts
elapsed time in microseconds (a rate of 1 MHz). Drift is guaranteed to be
less than 5 seconds per day for at least the first six years of use. To main-
tain day-to-day accuracy, the Monitor can reset the time base once each day
from the line frequency clock in the front end processor (although a line
frequency clock has quite low resolution, it has very high long-term
accuracy.)

The interval counter is a 12-bit hardware counter that counts in 10 us
increments (100 kHz). It can therefore count, and signal completion of, any
interval from 10 us to 40.95 ms; and it can also be read at any time to
determine how long some particular operation or procedure has taken. The
counter can be used for any purpose by the software, but it is employed
principally to signal the Monitor should a user tie up the system too long.
Associated with the counter are two flags, Interval Done and Interval
Overflow. Done sets when the counter reaches the value the program speci-
fies as its period or reaches its maximum (all IS); in either event, the
counter clears and starts counting over. Overflow sets only if the counter
reaches its maximum without ever matching its period.40 Setting Done re-
quests an interrupt on the level assigned to the counter, and the processor
responds by executing the instruction in location 514 of the executive pro-
cess table.

WRTIME Conditions Out, Meters (CON0 MTR,)

70260 Ifi x 1 Y
0 I2 13 14 1-l 18 35

Assign the interrupt level specified by bits 33-35 of the effective conditions
E and perform the functions specified by bits 18-26 as shown.

3g Unassigned instructions using these codes are DATA0 TIM,, BLKO MTR, and DATAI
MTR,. They execute as MUUOs.

4o Overflow can occur only if at some time during the count, the program changes the period
to a value less than the current counter value.

-

3-54 KLlO System Operations June 1982

“,“p’
ACCOUNTING TIME BASE PRIORITY

INTERRUPT
KfXXJNTS

'SF 'EN CLEAR ASSIGNMENT
I 1 I I I I I I

18 19 20 21 22 23 24 25 26 27 26 29 ’ 30 31 32 33 34 35

f’

Only bits 24-26 and 33-35 are for the system timing features under discus-
sion (time base, interval counter); bits 18-23 are for the accounting meters
discussed in a later part of this section.

The interrupt level assignment is solely for the interval counter. Bits
24-26 control the hardware counter for the time base, wherein 1s clear it
and turn it on or off (OS have no effect). The result of putting 1s in both bits
24 and 25 is indeterminate.

Bit 18 is a change bit for the accounting setup, Ifit is 0, bits 21-23 are
ignored. But if it is 1, the way in which the meters are enabled is adjusted
according to the configuration of those bits, where a 1 produces the indi-
cated function and a 0 has the opposite effect. A 1 in bit 23 turns on the
meters, and while on they automatically keep an account of user activity.
In addition the meters *are enabled during interrupt routines, during nonin-
terrupt executive time, or both (i.e. all executive time) as selected by bits 21
and 22.

Caution: Although this instruction does not write, and E is not even an
address, the value of E must be the address of a writable page.

Notes. The accounting bits affect only the circumstances in which the
accounts are kept. Whenever the accounting meters are enabled, they auto-
matically count both execution time and memory references.

CONI MTR, Conditions In, Meters

I 70264 111 x 1 Y I
0 12 13 14 1718 3s

Read the status of the accounting meters and time base, and the interrupt
level assigned to the interval counter into the right half of location E as
shown

ACCOUNTING TIME PRIORITY

EXyE ;$y_y;
0ASE INTERRUPT
ON ASSIGNMENT

I I ACCOUNT ACCOUNT ON I 1 I I I I I I

18 19 20 21 22 23 24 25 26 ’ 27 26 29 I 30 34 32 33 34 35

FIBTIME Read Time Base (DATA1 TIM,)

i 70204 111 x 1 Y I
0 I2 I3 14 17 18 35

Read the time base doubleword count from locations 510 and 511 in the
executive process table, add the current contents of the time base hardware
counter to the doubleword read, and place the result in location E,E + 1.

June 1982 ML10 System Operations 3-55

CON0 TIM, Conditions Out, Interval Counter

7 0.2 2 0 I x Y 1
0 12 13 14 17 I8 35

Set up the interval counter according to the effective conditions E as shown.

CLEAR TURN CLEAR
INTERVAL INTERVAL PERIOD
COUNTER

;$$E$ INTERVAL

I
ON FLAGS

I I 1 I I I I I I I
, 1 L-d

18 19 20 21 22 23 ' 24 25 26 1 27 26 2g 1 30 31 32 33 34 35

A 1 in bit 18 clears the counter, and can be given simultaneously with a 1
or 0 in bit 21 to turn the counter on or off. A 1 in bit 22 clears both Interval
Done and Interval Overflow. If the counter is on, Interval Done will set
when the count reaches the value specified by bits 24-35.

CONI TIM, Conditions In, Interval Counter

r- 70224 111 x 1 Y
0 12 13 14 17 18 3s

Read the status of the interval counter into location E as shown (the single
bit that can cause an interrupt is indicated by an asterisk).

INTERVAL COUNT

I I I I I I I I I I I I I I I I

0 1 2 ' 3 4 5 6 7 8 ' 9 lo II ' 12 13 14 ' 15 16 17

INTERVAL COUNTER INTERVAL PERIOD

ON DONE OMRFLOW
I I I I 8 I I I I I I I I

18 19 20 21 22 23 24 25 26'27 28 29'30 31 32'33 34 35

Bits 22 and 23 are the counter flags; note that Done can be set alone, but a
1 in bit 23 implies a 1 in bit 22 as well. Bits 24-35 are the period supplied
by the CONO, and bits 6-17 are the current contents of the counter.

User Accounts

Two doubleword counts are kept for every user process. These are under the
control of the accounting bits in a CON0 MTR, as described above, and
they always work together - i.e. the bits that select the circumstances for
accounting do so for both of them. When the accounting meters are enabled,
the execution meter counts at half the system clock rate while the processor
is actually executing instruction operations, in other words except while
waiting for memory (note that fast memory references are handled during
execution - there is no wait). The memory meter counts memory refer-

-.

KLlO System Operations

ences by or for instructions, not including fast memory references. Each
individual instruction reference is regarded as a single reference even if it
requires a page refill, and even if in one case memory control might handle
four words whereas in the next three cases the references might be to the
cache.

While the accounting meters are on, they are always enabled in user
mode, except in certain special procedures discussed at the end of this para-
graph. Additional enabling circumstances are selected by bits 21 and 22 of
a CON0 MTR,. Bit 21 enables while interrupts are actually being held, in
other words during the execution of interrupt routines. Bit 22 enables in
executive mode except while interrupts are being held. Programming 1s in
both bits causes selection throughout executive mode. Note that interrupt
routines executed in user mode are always included regardless of the se-
lected circumstances by virtue of their being in user mode. Lastly there are
two circumstances that automatically disable the meters regardless of any
selection made and whatever mode the processor is in. These are the execu-
tion of interrupt functions (PI cycles) (83.1) and special exempt microcode
procedures: updating the meters, handling a page failure, and handling a
TOPS-20 page refill.41

When a DATA0 PAG, assigns a new user base address (93.5), the
accounts for the preceding user are updated in this process table unless
such action is inhibited by a 1 in bit 18. The program can read the current
user accounts by these two instructions.

RDEACT Read Execution Account (DATA1 MTR,)

70244 r x Y
0 I2 13 14 17 18 35

Read the process execution time doubleword count from locations 504 and
505 in the user process table, add the current contents of the execution time
hardware counter to the doubleword read, and place the result in location
EJ+l.

RDMACT Read Memory Account

I 70240 I X
0 12 13 14 17 18

(BLKI MTR,)

Y 1
35

Read the memory reference doubleword count from locations 506 and 507 in
the user process table, add the current contents of the memory reference
hardware counter to the doubleword read, and place the result on location
E,E+l.

41 A TOPS-10 page refill is excluded from accounting by virtue of being done by memory
control while the execution meter is waiting.

KLlO System Operations 3-57

The accounting meters provide an accurate and reproducible measure
of the resources used by a given process. Even though one model processor
may differ in speed from another, the execution time count should be the
same for a given program run on either of them (the unit of time counted
will of course be different). Billing of charges to a user can be based on the
execution time and the memory reference count taken separately, or a time
equivalent can be assigned to a memory reference and the two accounts
combined in a single quantity.

Performance Analysis

The performance analysis meter is a tool for studying the performance of
the hardware and software of the system. With it, the analysis software can
find bottlenecks, such as overuse of a particular system facility. Informa-
tion of this sort should help the system administrator decide what new
equipment to add or how to expand the system, and should help Digital
decide how to modify existing software or what new hardware or software
to design.

The result of an analysis is a doubleword count kept in locations 512
and 513 of the executive process table. Available to the analyzer is a large
set of logic signals representing various conditions in the system. Incre-
menting of the hardware counter is controlled by a subset of these condi-
tions selected by the program. The conditions are treated as a Boolean
expression, and are divided into six groups, each corresponding to a term in
the expression. Counting is enabled when the expression is true, which
requires that all six terms be true. Within each term the conditions are
ored, so a given term is true when any chosen condition in it is true. In each
term the program must select some condition, or the term will be false by
default. Selection of conditions is by means of the bit configuration of a
word supplied to the analyzer. The following table lists the categories of
conditions for the terms, the bits in the word that make the selection, and
the individual conditions available in each category.

Terms Bits Conditions

Mode 27-28

Memory 12-16

Interrupt 18-26

Channels O-8

Microcode 9

Probe 10-11

User, executive, ignore

Processor waiting (E box wait), cache miss, writeback for refer-
ence (cache writeback), writeback for sweep (sweep write), ig-
nore

Interrupt on any level O-7, no interrupt in progress

Any channel busy (O-7), ignore

Microcode enable, ignore

Probe high or low, ignore

By setting bits 18-26 to select all available interrupt conditions -
interrupts on all levels and no interrupt - the program effectively deletes
the interrupt term from the expression. In other words it forces the term
true so the state of the interrupt system has no effect on whether analysis

--

3-58 KLlO System Operations

counting is enabled. All other categories include a specific provision by
which the program can force the term true and thus cause the selected
conditions in it to be ignored in evaluating the expression. For example the
mode choice is made by bit 27: 1 selects user mode, 0 selects executive. But
a 1 in bit 28 causes the selection made by bit 27 to be ignored; thus ena-
bling of the analyzer no longer depends on the mode and is purely a func-
tion of the conditions selected in other categories.

Besides selecting conditions for analysis, the program also chooses the
counting method used by the analyzer. In the duration method the analyzer
counts at half the system clock rate while the expression is true. In the
event method the counter advances one step each time the expression
changes from false to true. Selection of multiple conditions for the duration
method produces a composite picture of performance. Suppose we select
interrupts on levels 4 and 6 as our interrupt conditions. The analyzer will
then give a count of the total time spent handling interrupts on those
levels, and the nesting of an interrupt on level 4 within one on level 6 will
not affect the result.

Event counting however can vary considerably depending upon the
order in which events occur. If we choose only interrupts on level 6, each
return to an interrupt routine at level 6 from some higher level that inter-
rupted it will be counted as separate event; hence a single interrupt on the
level of interest may be counted several times. On the other hand selecting
interrupts on say levels 2 and 6 may mean that a level 6 interrupt plus half
a dozen level 2 interrupts will be seen as only one event. This would happen
if all of the level 2 interrupts occurred during the level 6 interrupt routine.

There are two instructions for the performance analyzer: one to set it
up and one to read it.

WRPAE Write Performance Analysis Enables (BLKO TIM,)

L 70210 J X Y 1
0 I2 I.314 17 I8 35

Select the counting method and conditions for performance analysis accord-
ing to the contents of location E as shown (a dagger indicates a bit in which
a 0 makes the selection indicated).

t t t t
SELECT SELECJ MEMORY CONDITIONS

SELECT CHANNELS IGNORE PROBE CACHE
,!.iCODE E BOX CACHE WRITE SWEEP

0 1 , z , 3, 4 , 5 , 6 , 7 1 IGNORE LOW , IGNORE WAIT , MISS , BACK , WRITE , IGNORE

0 I 2 13 4 5 ' 6 7 0 9 10 11 12 13 14 ' 15 16 17

Ll’ I

SELECT INTERRUPT LEVELS SELECT
MODE

SF;;;; CLEAR

CoUNTER 0 2
,

3 (4 METHOD
,

5
,

6
,

7 ,NONE USER
,
,GNORE

I I I I

1'3 19 20 ' 21 22 23 ' 24 25 26 27 28 29 30 31 32 ' 33 34 35

Bit groups corresponding to the terms in the enabling expression and the
individual conditions that constitute the groups are as follows.

KLlO System Operations 3-59

O-8 Channel conditions. Bits O-7 select channels O-7 busy. A channel
is busy when it is waiting for a device to respond or a transfer is in
progress. A 1 in bit 8 deletes the term from the expression.

9 Microcode condition. A 1 in this bit deletes the term from the
expression. If the bit is 0, the counter can run only when specifi-
cally enabled by the microcode, which is the standard case.

10-11 Probe conditions. The probe is simply an available input at pin
CA1 on the meter board, so the program must generally give a 1
in bit 11 to delete this term from the expression. Should a signal
under investigation be connected to the pin, then a 0 in bit 11
enables bit 10 to select the input level that satisfies the condition:
0 high, 1 low.

CAUTION

Connecting a signal line to the probe input may pro-
duce ringing in that line, which depending on its
length, may seriously degrade signal quality and
cause machine malfunction.

12-16 Memory conditions. 42 A 1 in bit 16 deletes this term from the
expression. Otherwise OS (not 1s) in bits 12-15 select enabling
conditions as follows.

12

13

14

15

The E box is waiting for the M box in a memory reference.
This is only for a reference made by the E box. Its duration
may however encompass a writeback to free a cache group
entry or a TOPS-10 page refill.

Because of an E box reference, the M box is fetching data
from storage or filling the cache (a cache miss). This includes
only a fetch and load stemming from an E box reference made
because the cache does not contain the desired word or is not
in use.

The M box is writing in storage because of an E box reference.
This would usually be a writeback to free a cache entry.

The M box is performing a writeback for a cache sweep.

18-26 Interrupt conditions. Bits 18-35 select interrupts on levels O-7.
An interrupt condition includes both the execution of an interrupt
function and the subsequent interrupt routine, if any; in other
words it includes both PI cycles and an interrupt held for the
level. A 1 in bit 26 selects the condition that no interrupt is cur-
rently in progress. If bits 18-26 all contain Is, the interrupt term
is always true and thus ignored. Similarly all OS holds it false.

42 Note: M box references initiated by the E box include those for instructions, operands,
interrupts, and special microcode procedures (meter update, page failure, TOPS-20 page
refill). References for writebacks, cache sweeping, TOPS-10 page refills, and the channels
are initiated by the M box itself.

-

3-60 KLlO System Operations

27-28 Mode conditions. A 1 or 0 in bit 27 enables the counter during
user or executive mode respectively; a 1 in bit 28 deletes this term
from the expression.

29 This bit selects the method of counting when the expression corre-
sponding to the set of conditions selected by bits O-28 is true. A 1
selects the event method wherein there is one count for each time
the expression becomes true; and a 0 selects the duration method
wherein the counter increments at half the system clock rate
while the expression is true.

Notes. There is no specific provision for turning the counter on and off.
It functions automatically whenever the selected expression is satisfied, but
it can easily be stalled by selecting an impossible combination. In particu-
lar, giving a WRPAE 1401 clears the counter and disables it.

RDPERF Read Performance Analysis Count (BLKI TIM,)

70200 I x Y
0 I2 13 14 17 18 35

Read the process execution time doubleword count from locations 504 and
505 in the user process table, add the current contents of the execution time
hardware counter to the doubleword read, and place the result in location
E,E+l.

Applications. The event method allows software to collect counts of
the number of times specific events occur over a period. Examples are calls
to the executive, interrupts on a particular level or disjoint interrupts to all
levels, cache misses, cache misses in user mode, traffic on the channels.
There are also more esoteric analyses, such as counting the number of
times a particular instruction or set of instructions is used (this would
require modifying the microcode to enable) or how often a particular piece
of software is called (this would require a patch in the Monitor). But the
event method is subject to the limitations discussed above. A low priority
interrupt routine could easily be recognized several times, and with the
selection of multiple conditions, events can be lost due to overlap. The
memory conditions especially overlap one another, and channel events are
very likely to be lost if combined with memory or interrupt conditions.

These limitations do not affect the duration method. Suppose we wish
to determine the total time spent doing interrupts and waiting for memory
references. Overlap here is of no significance: the fact that sometimes the
system is doing both does not matter. Typical uses are measuring the dura-
tion spent in user mode, or in executive mode, handling interrupts, han-
dling interrupts at a particular level, doing DTEBO console functions or
byte transfers (interrupt level O), doing writebacks, and so forth. With an
enable inserted in the microcode, one could measure the time spent manip-
ulating strings.

KLlO System Operations 3-61

3.7 Front End Functions

Every system contains one or more PDP-11 front end processors. But from
the point of view of the KLlO, a front end is a DTEBO interface - it is only
the DTEBO that the KLlO hardware, microcode and program see on the E
bus, and it is only the relationship between KLlO and DTEBO that concerns
us here (there is nothing in this section about the PDP-11 per se). A DTE20
handles communication between the central processor and a front end proc-
essor by way of the KLlO interrupt system. The program can assign a level
for standard or vector interrupts, but the interface can also perform special
interrupt functions - examine, deposit, byte transfer - on level 0. In
general all but one of the DTE20s are restricted: this means that a unit can
request special interrupt functions only if interrupt level 0 is enabled in it,
and examine and deposit are restricted to communication areas defined by
the Monitor.

Among the DTE20s, one is master and is thus unrestricted. It gains
this privileged status by means of a switch setting on the unit. The master
can perform diagnostic operations43 (included among these are the console
functions start, stop, execute, and continue), can perform the special inter-
rupt functions even when level 0 is disabled, and can override the restric-
tions on examine and deposit so as to gain access to all PDP-10 memory in
either physical or executive virtual address space or the executive process
table. Removal of the restrictions by placing a 0 in the Q bit of the interrupt
function word must be done individually for each transfer.

For each DTE20 the executive process table contains an &word control
block. These blocks contain the following information for byte transfer,
vector, examine and deposit interrupt functions.

Locations in Executive Process Table
Unit 0 Unit 1 Unit 2 Unit 3 Contents

140 150 160 170 Output byte pointer (to 11)

, 141 151 161 171 Input byte pointer (to 10)

142 152 162 172 Vector interrupt instruction

143 153 163 173 Reserved

144 154 164 174 Size of communication area for examine

145 155 165 175 Relocation address for examine area

146 156 166 176 Size of communication area for deposit

147 157 167 177 Relocation address for deposit area

A byte pointer is limited to a single word; it must therefore have a 0 in
bit 12, and its address is interpreted in executive virtual address space,
section 0. The programmer must also refrain from using any indexing or
indirection (bits 13-17 must be zero). After the microcode increments the
byte pointer selected by Q (0 out, 1 in) and calculates its effective address,

43 Except for stopping, diagnostic operations should be performed only when the processor is
halted or something has actually gone wrong. Otherwise they would interfere with nor-
mal traffic on the E bus.

3-62 KLlO System Operations

an input byte is inserted at the appropriate position in a memory location,
or an output byte from memory is sent to the DTE20 right-justified with
the rest of the output word filled with OS. An output byte transfer is essen-
tially an ILDB-DATA0 combination; input is a DATAI-IDPB. Output bytes
larger than sixteen bits can produce spurious E bus parity errors in the
DTE20.

In a DTE20 vector interrupt, the address part of the function word is
ignored, and the microcode executes the instruction supplied by the control
block. This should be a call to an interrupt routine.

Communication areas are defined separately for examine and deposit.
Thus the Monitor might divide the overall communication area into sepa-
rate parts for deposits by several units, but allow all of them to examine the
entire area. The size of an area is given as a number of locations, and the
relocation address is the physical address of the first location in the area.
Suppose we wish to assign a deposit area of sixteen words beginning at
location 22660 for DTE20 No. 2. In locations 166 and 167 of the executive
process table we would put respectively 20 and 22660. In its deposit func-
tion words the DTE20 would then use addresses O-17, and these would be
relocated to 22660-22677.

3.8 Error and Diagnostic Instructions

The first part of this section explains the instructions through which the
software handles the error flags and identifies the source of a hardware
error. The second part discusses a special instruction the Monitor uses to
set up the memory system and to get diagnostic and configuration informa-
tion directly from individual memory controllers. The objective of this
treatment is to complete the definition of all KLlO instructions and to give
the programmer what he needs to identify sources of hardware error for
purposes of software recovery. For information on diagnosing equipment
ills, the reader must turn to maintenance documents. Note that this section
does not touch on diagnostic functions the front end can execute in the
KLlO without the KLlO microcode running; that subject is treated in the
maintenance documentation.

Error Monitoring and Investigation

A few hardware errors - specifically a parity error in the page table or in a
word brought into AR or ARX from memory - are detected by the pager
and produce a page failure. Other hardware errors detected in the processor
or on the S bus are indicated by flags that can request an interrupt on a
level assigned to the processor. Several of these flags also lock information
about the bad reference into the error address register ERA. The program
can read this register, and it continues to hold the same information, even
should subsequent errors occur, until the flag that locked it is cleared.

The error conditions are generally regarded as important enough to be
assigned to the highest priority level. However for conditions that may be
associated with user instructions (a parity error or unanswered memory
reference), the common practice is for the error interrupt to switch over to
the lowest priority level by means of a program-set request. Then the time

KLlO System Operations 3-63

taken to handle the situation, which may well be considerable, cannot in-
terfere with high priority events.

Error flags are handled by two condition IO instructions that address
the processor, which has device code 000, mnemonic APR.44 These instruc-
tions also handle the sweep flags for the cache (83.2). The instruction that
reads ERA uses the interrupt device code.

CON0 APR, Conditions Out, Processor Flags

70020 I x Y
0 12 13 14 17 18 35

Assign the interrupt level specified by bits 33-35 of the effective conditions
E and perform the functions specified by bits 19-31 as shown (a 1 in a bit
produces the indicated function, a 0 has no effect).

CLEAR ENABLE DISABLE CLEAR 1 SET SELECT FLAGS FOR BITS 20-23 PRIORITY ALL IN-OUT ,
INTERRUPT

IN-OUT SELECTED FLAGS S BUS NO PAGE MB CACHE ADDRESS POWER SWEEP ASSIGNMENT
DE ‘4 ICE S

I 1 I ERROR MEMORY FAILURE PARITY GIRCTRY PAklTY FAlLtiRE DONE I I

18 19 20 ' 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A 1 in bit 19 generates the IO reset signal, which clears the control
logic in all of the peripheral equipment (but affects none of the internal
devices, such as the pager or the processor flags).

Bits 20-23 select flag functions: 1s in these bits produce the indicated
effects on the processor flags selected by 1s in bits 24-31. A 1 in bit 20
enables the setting of any selected flag to request an interrupt on the level
assigned to the processor; a 1 in bit 21 disables the selected flags from
requesting interrupts. Similarly a 1 in bit 22 or 23 clears or sets the se-
lected flags. The result of putting 1s in both bits 20 and 21 or 22 and 23 is
indeterminate.

Notes. Setting flags has of course no relation to what the flags repre-
sent; the function is used only to check out the flag logic.

CONI APR, Conditions In, Processor Flags

I 70024 / x Y
0 12 13 14 17 I8 35

Read the status of the processor error and sweep flags into location E as
shown (asterisks indicate bits that can cause interrupts).

44 The processor device code is also used in several instructions for the pager and the cache.

--

w-

-

3-64 KLlO System Operations

FLAGS ENABLED TO INTERRUPT

0 I

S BUS NO 'pNd&UT MB CACHE ADDRESS POWER SWEEP
ERROR MEMORY FAILURE PARITY DIRCTRY PARITY FAILURE DONE

2 '3 4 5 6 7 0 9 10 11 12 13 14 ' 15 16 17

* * * + * * * +
PRIORITY

SWEEP S BUS NO IN-OUT

BUSY PAGE PA",y,Y DKREY "p"nR,E$ POWER SWEEP INTRUPT IYTERRUPT
ERROR MEMORY FA,LURE LRROR P;a"d,',' ERROR FAILURE DONE REQUEST ASSIGNMENT

I8 19 20 ' 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

6-13 A 1 in any of these bits indicates that setting the listed flag will
request an interrupt on the level assigned to the processor by bits
33-35 of the CONO.

19

24

The cache is currently undergoing a sweep.

A storage controller has signaled the processor that it has detected
an error in its own operation or in information it has received over
the S bus or from one of its storage modules. If the type of error is
not identified by there also being a 1 in bit 25, 27 or 29, then the
condition is either an incomplete cycle or a parity error in data sent
to the memory (all data received by memory is written, even if
bad). Controller flags for some of these conditions can be read by
the diagnostic instruction discussed in the second part of this sec-
tion.

25 The processor attempted to access a memory that did not respond
within a preset time. This time is 68 ps on an extended KLlO, 82 ps
on a single-section KLlO. The setting of this flag locks information
about the attempted reference into ERA. Since a nonexistent mem-
ory supplies zero data, on read this error should be accompanied by
a 1 in bit 27.

26 A page failure has occurred in an interrupt instruction, or a word
with even parity has been received at AR from the E bus (the latter
can be recognized only if the transmitting device generates a parity
bit). An interrupt failure caused by an address break sets this flag
instead of producing an address failure ($3.5).

NOTE

A page failure in an interrupt instruction is regarded
as a fatal error, and causes an interrupt instead of a
page failure trap. The kernel program is expected to
set up the interrupt instructions so that a software
page failure simply cannot occur.

27 The buffer (MB) in memory control has received a word with even
parity. The setting of this flag locks information about the refer-
ence into ERA.

28 A physical page number with even parity has been encountered in
the cache directory. The setting of this bit turns off the cache, and
it remains off until the flag is cleared by giving a CON0 APR, with
1s in bits 22 and 28.

KLlO System Operations 3-65

29

30

31

32

A storage controller has signaled that it has received an address
with even parity from the processor. The parity check actually en-
compasses both the address and the control signals that accompany
it on the S bus. The setting of this bit locks information about the
attempted reference into ERA.

AC power has failed. The program should save PC, the flags, mode
information and fast memory in storage, update the accounting
meters, validate the entire cache, and halt the processor. Note that
PC may point to an interrupt routine rather than the main pro-
gram. After power is restored the front end must reboot the system,
and the Monitor must reestablish the operating environment (03.5).

A cache sweep has been completed.

Some processor flag is currently requesting an interrupt, i.e. some
flag in bits 24-31 is set and has been enabled to interrupt as indi-
cated by a 1 in the corresponding position in bits 6-13.

RDERA Read Error Address Register (BLKI PI,)

70040 I x Y 1
0 I2 13 14 17 18 35

Read the contents of the error address register into location E. If No Mem-
ory, MB Parity Error or Address Parity Error is set, ERA contains informa-
tion about the reference corresponding to the first of those flags to be set as
shown.

WORD
NUMBER REFERENCE IDENTIFICATION INDETERMINATE

o 0 0 0 0 HIGH ORDER
ADDRESS BITS

SWEEP ICHANNEq DATA lSOURCE[WRITE

0 1 2 ' 3 4 5 ' 6 7 8 9 10 11 ' 12 13 14 ' 15 16 17

PHYSICAL ADDRESS OF FIRST WORD OF TRANSFER

I8 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

Bits O-l and 14-35 identify the physical location of the reference in which
the error occurred. Bits 14-35 are the address of the specific memory refer-
ence made by the program or whatever. If the reference required only a
single transfer, that address is the error address. But if the reference
triggered a group transfer, bits 14-35 are the address of the first reference
chronologically in the group, and bits 0 and 1 give the number of the word
on which the error actually occurred. Note that word numbers are in physi-
cal, not chronological, order.

Information given in bits 2-6 identifies the reference. A 1 in bit 2 or 3
respectively means the reference was made for a cache sweep or a channel
transfer. Bit 6 indicates the memory function being performed for the refer-
ence, where the read and write parts of a read-pause-write are separately

3-66 KLlO System Operations

indicated by 0 and 1. Bits 4,5 and 6 together identify the source of the data
for the transfer or attempted transfer (on write the word is always going to

storage).

Bits 4-5 Source with 0 in bit 6 Source with 1 in bit 6

00

01

10

11

Storage for any read or read-pause-write

Cache for channel read or TOPS10 page
refill

Channel status

Channel data

AR

Cache writeback

ERA retains the same information until the program clears the locking
flags by giving a CON0 APR,2260P. Of course only flags that are set actu-
ally need be cleared, and the routine that responds to errors should consider
and clear all set flags. To facilitate diagnosis from the front end, the master
reset does not clear ERA. Hence if need be, the front end can give diagnos-
tic functions that reset the KLlO and then read ERA.

The processor includes provision for forcing bad parity to check the
error detection logic. Bits 18-20 of a CON0 PI, (53.1) respectively cause
even parity to be generated for an address sent to memory, a data word
available from AR, and a page number entered into the cache directory.
Where the data error shows up depends on where the word is sent from AR.
Which errors are being forced can be seen by checking the flags in the same
bits of a CON1 PI,.

Programming Cautions. When handling parity error or nonexistent
memory interrupts, the programmer should beware of the following.
l An incorrect word from memory to AR or ARX can result in both a page
failure and an interrupt. In general the page fail trap to the Monitor can be
expected to occur slightly ahead of the interrupt.
l Should an error flag be set while another interrupt request is being
processed, the system would handle the lower priority interrupt before get-
ting to the processor interrupt. This means PC may be pointing to a lower
level interrupt routine rather than the program level at which the error
occurred. Remember that during request processing, the interrupt system
is otherwise static and the program continues.
l Even without inadvertent interference from another level, it is quite
likely the processor will perform one or perhaps two more instructions be-
tween the time the error flag sets and its interrupt starts. Hence even
though PC is at the correct program level, it may well be pointing to the
first or second instruction following the one in which the error occurred.
l A processor error interrupt that switches over to a lower priority level
should not return to the interrupted program, as the error may simply
recur, producing a second processor interrupt before the error-handling in-
terrupt for the first. This could happen because PC is actually pointing to
the offending instruction, but beyond that, one error often begets another

KLlO System Operations 3-67

- consider the case of PC counting into a nonexistent memory. In any
event, it is generally not worthwhile to return to any program without first
finding out what went wrong.

S Bus Diagnostic Cycle

Ordinarily the S bus is used for the processor to reference memory. But the
S bus also has a diagnostic cycle that allows the processor to communicate
with the memory controllers rather than to access a particular location.
The diagnostic cycle is initiated by the processor giving a special instruc-
tion that sends a function word to a controller and receives a word of error
and diagnostic information back from it.

SBDIAG S Bus Diagnostic Function (BLKO PI,)

70050 I x Y
0 I2 13 14 17 I8 35

Send the contents of location E as a function word over the S bus to the
controller specified by bits O-4, and read the return word for the function
from that controller into location E+l. Which function a word represents is
indicated by its code in bits 31-35.

-

3-68 KLlO System Operations

Chapter 4

KS1 0 System Operations

The information presented in this chapter is primarily for Digital’s own
system programmers, for their use in writing the Monitor and other soft-
ware. However it is also needed by anyone who wishes to write his own
operating system, to some extent by users who handle their own IO, and by
programmers in a situation where all the facilities of a system are dedi-
cated to a single large task.

WARNING

KS10 functions are implemented in microcode, which can be
changed much more easily than hardware. Although user op-
erations are deliberately kept as compatible as possible from
one machine to the next, Digital will change the KS10 sys-
tem microcode whenever such, change will result in greater
speed, efficiency or effectiveness. Therefore anyone writing
system software should make sure to use the most recently
updated version of this documentation, and before embarking
on any project as enormous and critical as an operating sys-
tem, to check with Large Systems Engineering for any
changes not yet documented.

Programming for the system as a whole is programming in executive
mode. Only the executive program is without instruction restrictions, and
only it can, if needed, access physical memory unpaged. The amount of
useful work done by the system depends upon how efficiently and effec-
tively the executive manages the system. This means selecting which pro-
cesses will run when, managing their working sets, responding to their
needs, and even reacting to error situations or perhaps downright unaccept-
able behavior on the part of a user. The executive program accomplishes
these objectives by handling all in-out for the system, setting up page maps,

4-l

trap locations, interrupt locations and the like for both itself and the users,
handling user accounts, and so forth. In other words, except for handling in-
out, the activities of an operating system are the topics covered in this
chapter. Of course the system programmer must also be quite familiar with
all of the material presented in Chapters 1 and 2. In particular he must
fully understand the architecture of the system as discussed in Chapter 1,
and must be especially well versed in the use of the JRST instruction and
MUUOs ($52.9, 2.16).

System information for other processors is given in Chapters 3 and 5.
The present chapter is devoted solely to the KSlO, but contains two sections
on paging, only one of which is applicable to a given system. 84.3 describes
the paging used with the TOPS-10 Monitor; this paging is similar to that of
the KIlO. 84.4 treats the paging associated with the TOPS-20 Monitor.
Both kinds of paging employ the same hardware - the difference lies in
the microcode. All instructions discussed in this chapter are for system
operations and are thus subject to the same restrictions as IO instructions:
namely, they can be performed only when the processor is in executive
mode or is in user mode with User In-out set.

Some of the material presented here is related to the Unibus adapters.
The chapter describes only the activities of the microcode undertaken for
the adapters; it does not describe the adapters themselves or their program-
ming.

4.1 Priority Interrupt

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service
them, but they must be serviced within a short time after they request it.
Failure to service within the specified time (which varies among devices)
can often result in loss of information and certainly results in operating the
device below its maximum speed. The priority interrupt is designed with
these considerations in mind, i.e. the use of interruptions in the current
program sequence facilitates concurrent operation of the main program and
a number of peripheral devices through the Unibus adapters. The hardware
also allows system flags (representing the console and conditions internal
to the processor) to signal the program by requesting an interrupt. To avoid
confusion with Unibus peripheral devices, let us regard the entities with
which the interrupt system deals as “units”. The system flags together
constitute a unit.

Interrupt requests are handled through seven levels arranged in a pri-
ority chain, with assignment of units to levels entirely at the discretion of
the programmer. To assign a unit to a level, the program sends the number
of the level to the unit control register as part of its operating conditions.
Levels are numbered 1-7, with 1 having the highest priority; a zero assign-
ment disconnects the unit from the interrupt levels altogether. Any num-
ber of units can be connected to a single level, and an adapter can be
connected to two levels.

When a unit requires service it sends an interrupt request signal over
the request line corresponding to its assigned level in the processor. The

4-2 KS10 System Operations

processor recognizes the request if the level is active (on). The request
signal remains on the line until turned off by an appropriate response from
the processor, either given by the program or generated automatically by
the hardware. Thus if a request is not recognized or accepted when made, it
will be when the appropriate conditions are satisfied. A single level will
shut out all others of lower priority if every time its service routine
dismisses the interrupt, a device assigned to it is already waiting with
another request.

In a Unibus system the IO devices receive and send information via the
adapter, and they signal the adapter to indicate their needs. To transfer
data for high speed devices, the adapter can make direct access to memory
over the KS10 bus. But to transfer data for slower devices and to handle
control situations for all devices, the adapter uses the KS10 interrupt. For
individual devices to signal the adapter, the Unibus has its own interrupt
system of four levels, BR4-BR7, with the last having highest priority. Re-
quests for interrupts on BR6 and BR7 are translated into requests on the
KS10 interrupt level specified by the so-called “high” assignment, and
those on BR4 and BR5 are translated into KS10 requests on the “low” level.
Of course complete control over the adapter and the Unibus devices, includ-
ing assignment of levels for KS10 and Unibus interrupts, is entirely in the
hands of the KS10 program.

The request signal is generally derived from a flag that is set by vari-
ous conditions in the device. Often associated with these flags are enabling
flags, where the setting of some device condition flag can request an inter-
rupt on the assigned level only if the associated enabling flag is also set.
The enabling flags are in turn controlled by the conditions supplied to the
device. For example, a device may have half a dozen flags to indicate vari-
ous internal conditions that may require service by an interrupt; by setting
up the associated enabling flags, the program can determine which condi-
tions shall actually request interrupts in any given circumstances.

Having recognized a request, the processor will do nothing further with
it unless the priority interrupt system is on. But even with the system off,
the processor will continue to recognize requests on other levels; and when
the system is finally turned on, it will respond as though all requests had
just been recognized, handling the highest priority one first.

Processing an Interrupt

The processor handles only one request at a time. When it is ready, it
accepts the highest priority request currently recognized, provided that re-
quest is on a level higher than the current program (all levels are higher
than a noninterrupt program). To process a request the microcode stops the
program, turns off the interrupt system to prevent interference from other
requests, and executes a “who are you?” cycle on the KS10 bus to determine
which adapters are currently requesting interrupts on the accepted level.
Note that at this point the processor is accepting not an individual request,
but rather a class of requests: namely all those being made on the same
level. In this cycle the microcode sends out the number of the level, and the
individual adapters O-3 indicate whether they are requesting interrupts on
that level by placing 1s on bus lines 18-21 respectively. (Hence only lines
19 and 21 are used, for adapters 1 and 3.)

KS10 System Operations 4-3

If no adapter responds, the request is assumed to be internal, origina-
ting either from the system flags or the program itself. In this case the
microcode starts the interrupt by executing the instruction at location 40 +
2N in the executive process table, where N is the level number. Level 1
uses location 42, level 2 uses 44, and so on to level 7 which uses 56.

If the response on lines 18-21 is nonzero, the processor gives priority to
the lowest-numbered adapter that has a request on the accepted level1 by
sending out the number of that adapter 2 in a vector request cycle on the
bus. The vector address returned from a device is divided by 4, and the
result3 is used as an index into a table of interrupt instructions for that
adapter. The table address is taken from executive process table location
100 + N, where N is the adapter number (i.e. locations 101 and 103 are
used). The processor then starts the interrupt by executing the instruction
contained in the location specified by the table address plus the vector
address divided by 4. The table pointer must be nonzero - otherwise an
illegal interrupt halt occurs (a4.7).

Interrupt Instructions. An interrupt instruction is one executed in
the interrupt location for a level, in direct response by the hardware (rather
than by the program) to a request on that level. An interrupt location is
either executive process table location 40 + 2N specifically for level N, or
the adapter table location derived from the interrupt vector and the table
pointer corresponding to the adapter having priority among those on the
accepted level. Only two instructions can be used as interrupt instructions:
JSR and XPCW. For either, the processor holds an interrupt on the level,
turns the interrupt system back on, and takes the next instruction from the
location specified by the jump (as indicated by the newly changed PC). For
a JSR the processor automatically enters executive mode. For an XPCW it
enters the mode specified by the new flag word. Either instruction is a jump
to a service routine handled by the Monitor. Use of any other instruction
results in an illegal interrupt instruction halt (§4.7).

The most important point of which the programmer must be aware is
that even while User is set, the interrupt instructions are not part of the
user program. They are executed in executive mode and are therefore sub-
ject only to executive restrictions. As an interrupt instruction, JSR auto-
matically clears User to jump to an executive service routine. An XPCW
should be set up to produce the same result.

Interrupt Programming

The program can control the priority interrupt system by means of these
two instructions.

1 There are therefore two orders of priority associated with an interrupt: first the level, and
then for all adapters requesting interrupts simultaneously on the same level, adapter
number.

2 Note that these are the adapter numbers (1 and 31, not the controller numbers used in IO
addresses (0 and 1).

3 A vector address is a multiple of 4 because it specifies a pair of word locations in the byte-
oriented Unibus addressing scheme.

4-4 KS10 System Operations

WRPI Write Priority Interrupt Conditions

70060 / x Y

0 I2 1.3 14 1718 3 5

Perform the functions specified by the effective conditions E as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

DROP PROGRAM INITIATE
REQUESTS ON INTERRUPTS
SELECTED ON
LEVELS I

CLEAR
TURN TURN TURN TURN

PI
ON OFF OFF ON SELECT LEVELS FOR BITS 22, 24.25,26

I
SYSTEM SELECTED LEVELS PI SYSTEM

/ I I 1 12 13 14 15 16 17

I8 19 20 ' 21 22 23 ' 24 25 26 ' 27 213 29 ' 30 31 32 ' 33 34 35

22

23

On levels selected by 1s in bits 29-35, turn off any interrupt requests
made previously by the program (via bit 24).

Turn off the priority interrupt system, turn off all levels, drop all
program-set requests, and dismiss all interrupts that are currently
being held.

24 Request interrupts on levels selected by 1s in bits 29-35, and force the
processor to recognize them even on levels that are off. The request
remains indefinitely, so as soon as an interrupt is completed on a
given level another is started, until the request is turned off by a
WRPI that selects the same channel and has a 1 in bit 22.

When this bit forces recognition of a request on the highest prior-
ity level, at most one additional program instruction may be per-
formed before the interrupt.

25 Turn on the levels selected by 1s in bits 29-35 so interrupt requests
can be recognized on them.

26

27

28

Turn off the levels by 1s in bits 29-35, so interrupt requests cannot be
recognized on them unless made by a WRPI with a 1 in bit 24.

Turn off the interrupt system so no requests can be accepted.

Turn on the interrupt system so the hardware can process requests.

RDPI Read Priority Interrupt Status

70064 I x Y I
0 I2 I.3 I4 1718 35

Read the status of the priority interrupt into location E as shown.

KS10 System Operations 4-5

PROGRAM REQUESTS ON LEVELS

I 112/314151617

0 I 2 ' 3 4 5 ' 6 7 8 '9 IO II ' 12 13 14 ' 15 16 17

INTERRUPT IN PROGRESS ON LEVELS
PI

SYSTEM
LEVELS ON

I / 2 I3 I4 I 5 I6 I7
ON

I 12 I3 j 4 I5 I6 I f,

I8 19 20 21 22 23 ' 24 25 26 ' 27 28 29 1 30 31 32 I 33 34 35

Levels that are on are indicated by 1s in bits 29-35; 1s in bits 21-27 indi-
cate levels on which interrupts are currently being held; and 1s in bits
11-17 indicate levels that are receiving interrupt requests generated by a
WRPI with a 1 in bit 24. A 1 in bit 28 means the interrupt system is on, and
1s in bits 29-35 therefore indicate active levels.

Dismissing an Interrupt. The processor holds an interrupt until the
program dismisses it, even if the interrupt routine is itself interrupted by a
higher priority level. Thus interrupts can be held on a number of levels
simultaneously, but from the time an interrupt is started until it is dis-
missed, no interrupt request can be accepted on that level or any of lower
priority.

A routine dismisses the interrupt by using an instruction that restores
the level on which the interrupt is being held at the same time it returns to
the interrupted program. The proper instruction is XJEN (JRST 7,) or JEN
(JRST 12,). Once the level is restored, the hardware can again accept re-
quests and start interrupts on it and lower priority levels. These instruc-
tions also restore the flags: XJEN from the flag-PC doubleword if the rou-
tine was called by an XPCW; JEN from the left half of the PC word if the
routine was called by a JSR.

CAUTION

An interrupt routine must dismiss the interrupt when it re-
turns to the interrupted program, or its level and all levels of
lower priority will be disabled, and the processor will treat
the new program as a continuation of the interrupt routine.

Timing. The maximum time a device may wait for an interrupt to
start depends on how many active devices are of higher priority and how
long their service routines are. When a given request is of highest priority,
its device need never wait longer than 40 ps.

Special Considerations. When an interrupt occurs, PC points to the
interrupted instruction (or to an XCT that executed it), unless the interrupt
occurred in an overflow trap instruction, in which case PC points to the
instruction that overflowed. After taking care of the interrupt, the proces-
sor can always return to the interrupted instruction. Either a> the instruc-
tion did not change anything; b) the interrupt was in the second part of a
two-part instruction, where First Part Done being set prevents the proces-
sor from repeating any unwanted operations in the first part; or c) the

4-6 KS10 System Operations

interrupt occurred at some point in a multipart instruction where the mi-
crocode rigged the various pointers and other quantities so the processor
actually restarts the instruction where it stopped, rather than from the
beginning. However, in a BLT and in byte manipulation, the very mecha-
nism that facilitates the return results in special properties of which the
programmer must be aware.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that
holds the pointer as an index register in the same BLT, he cannot have the
BLT load AC except by the final transfer, and he cannot expect AC to be
the same after the instruction as it was before.

An interrupt can also start in the second effective address calculation
in a two-part byte instruction. When this happens, First Part Done is set.
This flag is saved as bit 4 of a flag word, and if it is restored by the inter-
rupt routine when the interrupt is dismissed, it prevents a restarted ILDB
or IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an IDLB or IDPB would skip a byte.
And if the routine restored the flag, the interrupted IDLB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for
user programs. Even if the User In-out flag is set, a user generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed
in the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
l No request can be accepted, not even on higher priority levels, while a
request is being processed or an interrupt is starting. Therefore do not use
lengthy effective address calculations in interrupt instructions.
l To prevent a device from hanging up a level, the programmer must be
aware of - and satisfy - whatever requirements the device has for drop-
ping the request.
l The interrupt instruction that calls the routine must be an XPCW or a
JSR.
l The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Computations and any other time-
consuming activities that can possibly be performed outside the routine
should not be included within it.
l Never turn off the interrupt system in a routine unless it is absolutely
necessary, and then always turn it back on again as soon as possible. If one
or more levels can be turned off in place of the entire system, always do
that instead.
l If the routine uses a UUO it must first save the contents of the loca-
tions that will be changed by it in case the interrupted program was in the
process of handling a UUO of the same type (82.16).

KS10 System Operations 4-7

l The routine must dismiss the interrupt (with an XJEN or JEN) when
returning to the interrupted program. Flags and UUO locations should be
restored.

4.2 Cache

For the user, the cache is transparent: any program simply gets informa-
tion from memory and stores information in memory. But use of a cache as
part of the memory subsystem reduces program time, since the cache is
faster than the storage modules, and also reduces storage use by the pro-
gram, making a larger percentage of total storage cycles available to other
parts of the system. The cache is essentially 512 registers that duplicate the
contents of frequently referenced storage locations in the virtual address
space. Its only use is for reading information from it instead of taking the
time to go to storage, but this can result in a considerable saving for the
program.

Each register in the cache corresponds to a unique position within a
page. Associated with the cache is a directory that labels each register by
the virtual page containing the word that the register duplicates. A direc-
tory entry also has a parity bit and other bits that identify certain charac-
teristics of the reference that caused the word to be written in the cache. A
cache hit can occur only when the circumstances of a read reference for a
particular location match those of the last time the location was written.
These requirements are a virtual reference4 to the same page in the same
address space (user or executive). Given a match, it is also required that
paging be enabled by the Monitor, that the page map indicate the individ-
ual page is cacheable, and that the directory entry have correct parity.
Moreover the cache can be disabled altogether from the console, and the
microcode can inhibit its use in individual references.

There is no real programming for the cache except that the Monitor
must decide, and so indicate in the page map, which pages are cacheable
and which are not. Obviously the contents of the cache must be invalidated
whenever there is any significant change in the virtual address environ-
ment, but the microcode handles this automatically. A sweep of the entire
cache takes about 80 PS.

4 The cache is also written on a physical reference, but the word cannot later be used as the
directory entry is invalid (i.e. not virtual).

4-8 KS10 System Operations

4.3 TOPS-10 Paging and Process Tables

- General information about the machine modes and paging procedures is
given in 81.3. Here we treat in detail the structure of the process tables and
certain hardware procedures - paging and page failures - a knowledge of
which is necessary for an understanding of executive programming. This
section covers these topics relative to a machine that uses the TOPS-10
Monitor. The next section presents equivalent information for the TOPS-20
Monitor. Instructions through which the Monitor controls the pager and
otherwise exercises overall management of the program environment are
the same whether the system uses TOPS-10 or TOPS-20, and are described
in $4.5.

With paging turned on, the program considers all of its dealings with
memory to be in its virtual address space, and interrupt instructions refer-
ence executive virtual address space. A virtual address is any address given
in virtual space except those for fast memory, which are treated as physi-
cal. The pager maps only virtual addresses, but it is involved in all refer-
ences to the extent that it responds to error situations. Physical references
include those made by the microcode to carry out the mapping procedure,
retrieve interrupt instructions, and handle traps, halts and UUOs.

Paging

All of memory both virtual and physical is divided into pages of 512 words
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by l&bit addresses, where the left
nine bits (18-26) specify the page number and the right nine (27-35) the
Ilocation within the page. Physical memory can contain 1024 pages and
requires 19-bit addresses, where the left ten bits (17-26) specify the page
number. The hardware maps the virtual address space into a part of the
physical address space by transforming the N-bit addresses into 19-bit
addresses.5 In this mapping the right nine bits of the virtual address are
not altered; in other words, a given location in a virtual page is the same
location in the corresponding physical page. The transformation maps a
virtual page into a physical page by substituting a lo-bit physical page
number for the g-bit virtual page number. The mapping procedure is car-
ried out automatically by the pager, but the page map that supplies the
necessary substitutions is set up by the executive program. Each word in
the map provides information for mapping two consecutive pages with the
substitution for the even numbered page in the left half, the odd numbered
page in the right half.

Two locations in the register file are used by the Monitor to specify the
physical page numbers of the user and executive process tables. To retrieve
a map word from a process table, the pager uses the appropriate base page

5 For paging purposes page 0 has only 496 locations using addresses 20-777, as addresses
O-17 reference fast memory, which is unrestricted and available to all programs. (In gen-
eral a user cannot reference the first sixteen storage module locations in his virtual page
0.) Throughout this discussion it is assumed that all references are to storage.

KS10 System Operations 4-9

number as the left ten bits of the physical address and some function of the
virtual page number as the right nine bits. For example, the entire user
space of 512 virtual pages at two mappings per word requires a page map of
just half a page, and this is the first half page in the user process table.
Thus locations O-377 in the table hold the mappings for pages 0 and 1 to
776 and 777. To find the desired substitution from the g-bit virtual page
number, the hardware uses the left eight bits to address the location and
the right bit to select the half word (0 for left, 1 for right).

The executive virtual address space is also 256K, but the page map for
it is in three parts. The map for the first 112K (pages O-337) is in executive
process table locations 600-757. The map for the second half of the virtual
address space uses the same locations in the executive process table as are
used in the user process table for the user map (locations 200-377 for pages
400-777). The map for the remaining 16K in the first half of the executive
virtual address space is in the user process table, the mappings for pages
340-377 being in locations 400-417. This means the Monitor can assign a
different set of thirty-two physical pages (the per-process area) for its own
use relative to each user. Hence when switching from one user to another,
the Monitor need change only the user process table, this single substitu-
tion making whatever change is necessary in the executive address space
for a particular user.

Figures 4.1 and 4.2 show the organization of the virtual address spaces,
the process tables and the maps for both user and executive. The first
illustration gives the correspondence between the various parts of the ad-
dress spaces and the corresponding parts of the page maps. The second
illustration lists the detailed configuration of the process tables as deter-
mined by the hardware. Any table locations not used are reserved for fu-
ture use by the hardware or for use by the Monitor for software functions.
Note that the numbers in the half locations in the page map are the virtual
pages for which the half words give the physical substitutions. Hence loca-
tion 217 in the user page map contains the physical page numbers for
virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
address space for a given program by defining only certain pages as accessi-
ble.6 The Monitor also specifies whether each page is writable or not and
cacheable or not. Each word in the page map has this format to supply the
necessary information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE

PHYSICAL PAGE APWSC ADDRESS BITS 11-26

8 17 18192021 22

PHYSICAL PAGE
ADDRESS BITS 11-26

26 35

6 There is no requirement that the accessible space be continuous - it can be scattered
pages. The convention however is for the accessible space to be in two continuous virtual
areas, low and high, beginning respectively at locations 0 and 400000. The low part is
generally unique to a given user and can be used in any way he wishes. The (perhaps null)
high part is a reentrant area, which is shared by several users and is therefore write-
protected.

4-10 KS10 System Operations

Bits 8-17 and 26-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1s in the remaining “page use” bits
are as follows.

Bit Meaning of a 1 in the Bit

A

P

W

S

c

Access allowed

Not used (public in other processors)

Writable (not write-protected)

Software (not interpreted by the hardware)

Cacheable

Page Table. If the complete mapping procedure described above were
actually carried out in every instance, the processor would require two
memory references for every reference by the program. To avoid this, the
pager contains a page table, in which it keeps a large assortment of map-
pings for both the executive and the current user. The table has 512 loca-
tions, one for each virtual page number. Each location contains a mapping
(from a map half word) for the virtual page that identifies it, including the
physical page number and the W and C bits. Each location also has a parity
bit, a bit that indicates whether the mapping is for user or executive ad-
dress space, and a bit that indicates whether the entry is valid. A zero
mapping is perfectly valid, but a location is labeled as containing no valid
mapping by clearing it, thus clearing the valid bit. It is not necessary to
keep the access bit, as mappings for inaccessible pages are not entered into
the table.

When the program references a page whose mapping entry is tagged as
valid and in the program address space, the lo-bit physical number7 from
the mapping for the virtual page is used as the left ten bits in the physical
address for the memory reference (provided of course that the reference is
allowable according to the W bit). If however the entry is invalid or is not
for the correct address space, or the reference is for writing and W is 0, the
pager makes a separate memory reference (referred to as a “page refill”) to
get the mapping for the specified virtual page from the page map. The
mapping is placed in the table unless the reference fails because the page is
inaccessible or the program is attempting to write in a protected page.

7 Actually table locations have eleven bits for physical numbers, but the most significant is
not used.

KS10 System Operations 4-11

Figure 4.1: TOPS-10 Virtual Address Space and Process Table Layout

, 3-

77777 J_

USER
VIRTUAL

A%F

256K

USER
PROCESS
TABLE

000-777

-i

;

SECTION REFERENCES

TRAP 2.9

MU”0 2 16

INTERRUPT 4.1

0

‘56

34ococ
/

/’

/’

_* ’
_’

40000(
6 -- _
___----

4

14

89

EXECUTIVE

%%k
SPACE

112K

16K

EXECUTIVE
PROCESS
TABLE

34

14

17

3

60

/ I
I /

Y
‘I 400 -777 128

/ ’ I

\
II
1
‘I 108

/ I

I

’ /

\I

I

I\
I \ 000 - 337 112

/
II ‘::i,,,/ ,,,,,, /,,,J,6 -

77777,

-

4-12 KS10 System Operations

Figure 4.2: TOPS-10 Process Table Configuration

USER PROCESS TABLE EXECUTIVE PROCESS TABLE

0
USER PAGE 0 USER PAGE 1 0 I

I I

I
I

I
I

I RESERVED

i

41

I j 42

I
’ 377

USER PAGE 776 USER PAGE 777
400

EXECUTIVE PAGE 340 EXECUTIVE PAGE 341

I
417

EXECUTIVE PAGE 376 EXECUTIVE PAGE 377
420

RESERVED
421

USER ARITHMETIC OVERFLOW TRAP INSTRUCTION

USER STACK OVERFLOW TRAP INSTRUCTION
423

USER TRAP 3 TRAP INSTRUCTION
424

MUUO STORED HERE
425 ’

MUUO OLD PC WORD
“_?

EXECUTlVE NO TRAP MUUO NEW PC WORD

EXECUTIVE TRAP MUUO NEW PC WORD

4.53
USER TRAP MUUO NEW PC WORD

436

I

i RESERVED

!

57

60

100

101

102

103

104

177

200

377

400

420

421

422

423

424

i

PHlORlTY INTERRUPT INSTRUCTIONS

RESERVED I
ADAPTER 1 INTERRUPT TABLE POINTER

RESERVED

ADAPTER 3 INTERRUPT TABLE POINTER

RESERVED !
EXECUTIVE PAGE 400 EXECUTIVE PAGE 401

i

EXECUTIVE PAGE 776 EXECUTlVE PAGE 777

RESERVED I
EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

EXECUTIVE TRAP 3 TRAP INSTRUCTION

500 PAGE FAIL WORD i

501 PAGE FAIL OLD PC WORD
I

502 PAGE FAlL NEW PC WORD I

503 1 RESERVED

I I

I i I

I
i

577

600 EXECUTIVE PAGE 0 EXECUTIVE PAGE 1
I RESERVED

I I I ! I

i
EXECUTIVE PAGE 336 EXECUTIVE PAGE 337

RESERVED I

KS10 System Operations 4-13

Page Failure

When for any reason the pager is unable to make a desired memory refer-
ence, an event known as a “page failure” occurs. For this the pager termi-
nates the instruction immediately, without disturbing PC or storing any
results in memory or the accumulators, and executes a page fail trap. The
trap operation8 makes use of three locations in the user process table: it
places a page fail word in location 500, identifies the failed state of the
processor by placing the current PC word in location 501, and sets up the
flags and PC according to a new PC word in location 502. The processor
then resumes operation in the new state at the location now addressed by
PC. The same sequence of events occurs if the processor performs an IO
instruction and the adapter fails to indicate the transfer was accomplished.

There are two kinds of page failures, hard and soft. A hard failure
means that something really is amiss, whereas a soft failure generally
means only that the program requires some kind of service from the Moni-
tor. A hard failure is indicated by a 1 in bit 1 of the page fail word, and the
particular failure is specified by a code (which is therefore 3 20) in bits 1-5.
There are three such failures of which tyro are true page failures, i.e. fail-
ures involving memory reference, and for these the page fail word has this
format.

1
U36 OR37 0 OP 000 I ADDRESS

0 1 5 8 17 18 35

Whether the violation occurred in user or executive address space is indi-
cated respectively by a 1 or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether
or not a physical address was given for the reference. The code names the
particular failure as follows.

36 Uncorrectable memory error - in a processor reference the memory
controller has read an incorrect word from storage and was unable to
correct it. The processor has saved the word in AC 0 and AC 1, block
7, and has set the Bad Memory flag (RDAPR bit 28).

37 Nonexistent memory - the processor has called for a storage refer-
ence over the bus but the memory controller did not respond. This
error also sets the No Memory flag (RDAPR bit 27).

If the failure code is 20, the fail word instead has this format

u 20 OOlOlOOB IO ADDRESS
I

0 1 5 8 10 13 14 3s

and indicates a nonexistent IO register, i.e. an IO instruction gave an IO
address to which there was no response. A 1 in bit 13 indicates a byte
operation. (The 1s in bits 8 and 10 mean a physical reference and an IO
function on the bus.) Note that this is not an IO page failure, which is a
true (memory) page failure and causes a halt.

8 A page failure that occurs during an interrupt instruction does not act this way. Instead
the processor halts ($4.7).

4-14 KS10 System Operations

A soft failure - of which there are two, an inaccessible page and an
attempt to write in a write-protected page - is indicated by a 0 in bit 1.
The fail word still contains the U bit and the virtual address, but now bits
1-8 have one of these formats,

INACCESSIBLE [DloloiolTlolDi1/ WRITE VIOLATION /01110iSITIOIOllj

12345678 12345678

where S is simply the software bit taken from the mapping for the page
specified by bits 18-26, bit 8 is the inverse of bit 8 in the hard case (1 means
virtual), and T indicates the type of reference in which the failure occurred:
0 for a read-only reference, 1 for any reference involving writing. It is
evident from inspection of the two configurations that bit 2 is actually the
A bit from the mapping; and when the page is accessible, the 0 in bit 3
comes from the W bit. The type of reference per se implies nothing about
the cause of failure - it indicates only the reason the failed reference was
being made. Of course T and A both being 1 implies a write failure.

For a page fail trap, the new PC word is set up by the Monitor to
transfer control to executive mode. After rectifying the situation, the Moni-
tor returns to the interrupted instruction, which starts over again from the
beginning or from the stopping position in a multipart instruction. Even a
two-part instruction that has been stopped by a failure in the second part is
redone properly, provided the Monitor restores First Part Done. The mecha-
nism for making a correct return and the effects it produces on a BLT are
the same as for an interrupt, and are described under the special consid-
erations given at the end of §4.1.

Note that a soft failure seldom implies that anything is “wrong” -
unless a program has attempted to write in a truly write-protected area.
Consider a typical case where the Monitor has, for example, ten or twenty
pages of a user program in core; these would be the virtual pages indicated
as accessible. When the user attempts to gain access to a page that is not
there (a virtual page indicated in its mapping as inaccessible), the Monitor
would respond to the page failure by bringing in the needed page from the
disk, either adding to the user space or swapping out a page the user no
longer needs.

The same situation exists for writability. When bringing in a user
program, the Monitor would ordinarily indicate as writable only the buffer
area and other pages that will definitely be altered, distinguishing those
that must be revised on the disk at the end from those that can be thrown
away by setting the software bit. Then in response to a write failure, the
Monitor makes the page writable and sets the software bit to indicate to
itself that that page has in fact been altered and must be saved. When the
user is done, the Monitor need write back onto the disk only those pages for
which both W and S are set.

KS10 System Operations 4-15

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to
determine how the pager would respond to a particular reference without
actually chancing a page failure. It may also be useful to determine where
a particular virtual page is in physical memory. For such purposes the
processor has this instruction.

MAP Map an Address

257 A I X Y I
0 89 I2 1314 17 II3 35

If the pager is on, map the page number of the virtual effective address E
and place the resulting physical address and other map data in AC. If the
page is accessible, the information loaded into AC is of the form

000 PHYSICAL ADDRESS

0123456789 16 17 3s

where bits 17-26 are the physical page number the pager supplies for E, bit
0 is 1 or 0 depending on whether the paging is done in user or executive
address space, and W, S and C are the page use bits from the mapping as
explained above (the 1 in bit 2 represents A). If the page is inaccessible, AC
receives the given virtual address in place of a physical address; the word
also includes U and a 1 in bit 8, but the remaining bits are all zero.

However, should a memory error occur during access to the page map,
AC receives a hard page fail word. If the pager is off, the result is unde-
fined.

Notes. The instruction cannot actually fail, because regardless of what
happens, the page fail microcode returns to it instead of trapping to the
Monitor. The effective address calculation done for it could fail however.

4.4 TOPS-20 Paging and Process Tables

General information about the machine modes and paging procedures is
given in 81.3. Here we treat in detail the structure of the process tables and
certain hardware procedures - paging and page failures - a knowledge of
which is necessary for an understanding of executive programming. This
section covers these topics relative to a machine that uses the TOPS-20
Monitor.g The previous section presents equivalent information for the
TOPS-10 Monitor. Instructions through which the Monitor controls the
pager and otherwise exercises overall management of the program environ-
ment are the same whether the system uses TOPS-20 or TOPS-lo, and are
described in 04.5.

g For additional information on the kind of paging employed in a TOPS20 system, refer to
“Storage organization and management in TENEX”, by Daniel L. Murphy,
AFIPS - Conference Proceedings, Vol. 41, page 23, AFIPS Press, Montvale, NJ.

4-16 KS10 System Operations

With paging turned on, the program considers all of its dealings with
memory to be in its virtual address space, and interrupt instructions refer-
ence executive virtual address space. A virtual address is any address given
in virtual space except those for fast memory, which are treated as physi-
cal. The pager maps only virtual addresses, but it is involved in all refer-
ences to the extent that it responds to error situations. Physical references
include those made by the microcode to carry out the mapping procedure,
retrieve interrupt instructions, and handle traps, halts and UUOs.

NOTE

Hardware paging operations are inextricably intertwined
with the activities of the Monitor. The reader must be famil-
iar with both to be able to understand either fully.

Paging

All of memory both physical and virtual is divided into pages of 512 words
each. Physical memory can contain 1024 pages; its locations are specified
by 19-bit addresses, where the left ten bits (17-26) specify the page and the
right nine (27-35) the location within the page. The virtual memory space
addressable by a program is 512 pages and uses l&bit addresses, where the
left nine bits (18-26) are the page number. However for compatibility with
extended processors, the TOPS-20 paging system regards the virtual page
as composed of sections, each of 512 pages, even though the KS10 has only
one such section, and its virtual addresses have no section number. The
hardware maps the one-section virtual address space into a part of the
physical address space by transforming the N-bit addresses into 19-bit
addresses.lO In this transformation the right nine bits of the virtual address
are not altered; in other words a given location in a virtual page is the same
location in the corresponding physical page. The translation maps a virtual
page into a physical page by substituting a lo-bit physical page number for
the g-bit virtual page number. The mapping procedure is carried out auto-
matically by the pager, but the page map that supplies the necessary sub-
stitutions is set up by the executive program.

Pointers to the page maps for the user and executive virtual address
spaces are contained in section tables that begin at location 540 in the user
and executive process tables. But in the KS10 each section table has only
one entry (for section 0) at location 540. Two locations in the register file
are used by the Monitor to specify the physical page numbers of the process
tables. To retrieve the section pointer from a process table, the pager uses
the appropriate base page number as the left ten bits of the physical ad-
dress and 540 as the right nine bits. The section pointer must identify -
either directly or indirectly - a physical page that contains the page map.
Every pointer and mapping takes one word, and since there are 512 pages
and 512 words in a page, a page map requires exactly one page.

lo The mapping procedure is of course applied only to storage module references, whether
cached or not. AC references, which can be made by any program, even when virtual page
0 is accessible, are made directly to fast memory and require no mapping.

KS10 System Operations 4-17

Figure 4.3: TOPS-20 Process Table Configuration

USER PROCESS TABLE

0 1

; RESERVED

420

421 USER ARITHMETIC OVERFLOW TRAP INSTRUCTION I

422 USER STACK OVERFLOW TRAP INSTRUCTION I
423 USER TRAP 3 TRAP INSTRUCTION
424 MUUO FLAGS 1 MUUO OP CODE. A i

425 MUUO OLD PC I
426 E OF MUUO
427 MUUO PROCESS CONTEXT WORD I
430 EXECUTIVE NO TRAP MUUO NEW PC 1

431 EXECUTIVE TRAP MUUO NEW PC
432 RESERVED
433 RESERVED
434 USER NO TRAP MUUO NEW PC

435 USER TRAP MUUO NEW PC

436

I
I

I RESERVED I

;
I
I

477

500 PAGE FAIL WORD

501 PAGE FAIL FLAGS

502 PAGE FAIL OLD PC

503 PAGE FAIL NEW PC

I
I
I

I
I

RESERVED
I

537

540 USER SECTION 0 POINTER

541

I
I

I RESERVED

I

777 I

EXECUTIVE PROCESS TABLE

1 RESERVED

I
I

i
, PRIORITY INTERRUPT INSTRUCTIONS i

RESERVED

100 I
101 ADAPTER 1 INTERRUPT TABLE POINTER

102 RESERVED

103 ADAPTER 3 INTERRUPT TABLE POINTER

104

I

i
I

RESERVED

421 EXECUTIVE ARITHMETIC OVERFLOW TRAP INSTRUCTION

422 EXECUTIVE STACK OVERFLOW TRAP INSTRUCTION

423 EXECUTIVE TRAP 3 TRAP INSTRUCTION 424 I

i

I

I
I

I

I
I
I I
I I

420

I
I RESERVED
I
I

537

540 EXECUTIVE SECTION 0 POINTER

541

I I
; RESERVED

I
I
I

777 I i

Figure 4.3 shows the detailed organization of the process tables for
both user and executive, as determined by the hardware. Any table loca-
tions not used are reserved for future use by the hardware or use by the
Monitor for software functions.

4-18 KS10 System Operations

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction and indirect word formats, the Monitor usually
limits the actual address space for a given program by defining only certain
pages as accessible. There is no requirement that the accessible space be
continuous - it can be scattered pages. The Monitor also specifies whether
each page is writable or not and cacheable or n0t.l’ To determine the map-
ping for a given virtual page, the microcode carries out a pointer evaluation
procedure that starts with the section pointer. If it is discovered during this
procedure that the page is inaccessible, the page map or the referenced
page is not in memory, or the program is attempting to write in a write-
protected page, the microcode traps to the Monitor, which must handle the
situation. A trap to the Monitor for a reason of this sort is produced by
generating a “soft page failure.” But if nothing is amiss, the procedure is
carried out entirely by the microcode - with no need to call the software -
and it generates the mapping for the specified virtual page. The procedure
requires access to the page map, to a memory status table in which the
microcode keeps track of the use made of the page map and the program-
referenced page, and perhaps to other predefined or software-defined tables
as well. If the complete procedure were carried out in every instance, the
processor would require at least two memory references for every one by
the program. To avoid this, each mapping generated by the procedure is
placed in a page table, and the pager makes its virtual-to-physical transla-
tions from the mappings held in the table.12 Hence it is necessary to go
through the evaluation procedure only when the reference cannot be made
from the page table. Since the objective of the procedure is to place a map-
ping in the table, it is referred to as a “page refill.”

Page Table A location in the page table contains a mapping entry in
this format.13

MC PHYSICAL PAGE
ADDRESS BITS 11-26

Each entry is identified as providing the physical page number for the
translation for a particular virtual page. The properties represented by 1s
in the two “page use” bits are as follows.

I1 Again for consistency with extended processors, the Monitor can make the section (i.e. the
whole virtual space) inaccessible, unwritable or uncacheable, but is rather unlikely to do
so.

l2 In the evaluations the microcode does carry out, it generally does not need to access a
process table for a section pointer, as it keeps copies of the current pointers in the work-
space.

l3 In the engineering drawings and even in some Monitor documents, the M bit is
“writeable”, which name is consistent with its use with the TOPS-10 Monitor.

KS10 System Operations

labeled

4-19

Bit Meaning of a 1 in the Bit

M Modified - and therefore writable without further ado. A refill pro-
duces a 1 in this bit if the page has already been modified or the
reference that caused the refill is for write and the page is writable.
A 0 does not imply that the page is write-protected, but simply that if
a write reference occurs, the pager must find out if it can be written.
Throughout this discussion, “write reference” means any reference
involving writing; “read reference” means read only.

c Cacheable.

The page table has 512 locations, one for each virtual page number.
Besides a mapping for the virtual page that identifies it, each location has a
parity bit, a bit that indicates whether the mapping is for user or executive
address space, and a bit that indicates whether the entry is valid. A zero
mapping is perfectly valid, but a location is labeled as containing no valid
mapping by clearing it, thus clearing the valid bit.

When the program references a page whose mapping entry is tagged as
valid and in the program address space, the lo-bit physical number-l4 from
the mapping for the virtual page is used as the left ten bits in the physical
address for the memory reference (provided of course that the reference is
allowable according to the Mbit). If however the entry is invalid or is not in
the correct address space, or the reference is for writing and M is 0, the
pager does a refill to get or revise the mapping for the specified virtual page
from the page map. The result of the refill is placed in the table unless the
reference fails because the page is inaccessible or the program is attempt-
ing to write in a protected page.

Page Refill

The refill of a mapping into the page table is accomplished by evaluating
various types of pointers found in several kinds of tables. At some point in
the procedure the microcode must encounter a “page address” that identi-
fies the page map for the section, and it must end with a page address that
identifies the physical page corresponding to the referenced virtual page. A
page address has this format.

smIAc&E RESERVED PAGENUMBER

12 17 23 35

If bits 12-17 are zero, the storage medium is memory: i.e. bits 23-35 supply
the number of a page l5 that is in memory. If bits 12-17 are nonzero, the

I4 Actually table locations have eleven bits for physical numbers, but the most significant is
not used.

15 All pointers have provision for 13-bit physical page numbers (as in the KLlO), but the
microcode uses only the right ten bits.

-

4-20 KS10 System Operations

page exists but is stored on some other medium - perhaps the disk - and
the microcode traps to the Monitor. A page address may be contained in a
pointer, in which case some of the bits at its left have defined uses. But
when the page address stands alone, bits O-11 of the word containing it can
be used arbitrarily by the software.

Special Tables. Besides the section tables in the process tables, a refill
makes use of two predefined tables: the special page-address table (SPT)
and the (core) memory status table (CST). These are software-determined
tables in memory, but their base addresses are held in the workspace,
rather than in the register file like those of the process tables.16

The special page-address table contains page addresses that specify
shared pages or special pages (e.g. those used as page maps or other soft-
ware-defined tables). The microcode accesses specific entries in the SPT by
indexing on the physical base address (bits 17-35). The pointer format pro-
vides for an index of eighteen bits, so the SPT can actually be as large as
256K (and it need not start on a page boundary).

Information about the use made by programs of the various physical
pages is kept in the memory status table. In every refill, the microcode
updates CST entries for both the page containing the page map and the
page referenced by the program. The entry for a page is a full word, and is
accessed by adding the page number to the base address. If memory is fully
implemented at 1024 pages, the CST occupies two of them, but need not
begin on a page boundary. Note that the microcode does not manipulate
CST entries for the process tables, the SPT, nor the CST itself, unless they
are actually referenced by the program - in other words, unless the refill
is being performed for a program reference to one of the tables.

The status of a physical page in memory is indicated by a CST entry in
this format.

STATE CODE RESERVED M

0 8 35

The Monitor keeps a state code in bits O-8 of the entry; within the code, bits
O-5 represent the page age, which must be nonzero for the page to be
usable, whether it is the program-referenced page or the page map. Bits
O-5 being zero causes an age trap to the Monitor.17 The microcode updates
the entry by anding a CST mask word into it and oring a process use word
into that result. These two words are also held in the workspace. Bits 32-35
in them must be all 1s or all OS as illustrated in order to preserve hardware
information. A 1 in the M bit indicates the page has been modified since

l6 Remember that all memory tables defined by the pager are in physical address space, i.e.
they have physical base addresses. Of course, to load or access a table, the Monitor must
use paged virtual addresses. Note that if the base address is limited to a page number
(bits 17-26), the table must begin at a page boundary.

l7 Zero age usually means the page is being swapped in and is not yet available for refer-
ence. The Monitor can use part of a CST entry to record which processes use the page.

KS10 System Operations 4-21

MASK 1 1 1 1
0 31 32 35

CST MASK WORD

AGE DATA & OTHER INFORMATION 10000

0 31 32 35

PROCESS USE WORD

being brought into memory. l8 The microcode sets this bit in the entry for
the referenced page - not that for the page map - if the reference is write
and the page is writable.

Indirect pointers make use of tables whose locations are defined en-
tirely by the Monitor. In a single refill, these may include one or more
secondary section tables or page maps. Each such table or map is deter-
mined by a page address and a g-bit index, and is therefore a single page.
Memory status is kept only for the page maps.

Pointers. The microcode evaluates two kinds of pointers: section
pointers and map pointers. The former are used in section tables and the
latter in page maps. Members of these two classes are identical in form but
differ enough in function so they must be treated separately. There are four
types of section and map pointers distinguished by a type code in bits O-2;
of these, three are access pointers, i.e. they allow access to the given section
or page. An access pointer has this format in its left seven bits.

pqyiijq

0 2 4 6

Every access pointer must have use bits for the section or page it repre-
sents. These bits, W and C, indicate whether the section or page is writable
or cacheable. Throughout the evaluation procedure the microcode effec-
tively ands these bits from one pointer to the next, so the final result re-
quires that the given characteristics be specified at every step. In other
words if W is 1 in the final pointer for the mapping, the page is writable
provided the entire section was also specified as writable by the original
section pointer, and “writability” has been specified by every other pointer
encountered along the way. Every access pointer must also either contain a
page address or point to an SPT location that contains a page address.

Section Pointers. Entries in a section table are of these four types.ls

No Access

I 0 I AVAILABLE TO SOFTWARE I

0 2

The section is inaccessible.

l8 At the completion of a process, the Monitor checks the CST to determine which pages
have been modified and must be rewritten on the disk.

ls Type codes 4-7 are undefined and result in a page failure.

4-22 KS10 System Operations

Immediate

RESERVED ';;;f$$ RESERVEI)
PAGENUMBER
OFPAGEMAP

0 2 4 6 I2 17 23 3s

If bits 12-17 are zero, the page map is in the page specified by bits 26-35.
Otherwise the page map is not in memory.

An immediate pointer contains the page address of the page map.

Shared

2 C RtSERVED INDEX TOSPT LOCArlON CONTAINING
I'AGE ADDRESS 01. PAGE MAI'

0 2 4 6 18 35

The page address of the page map is in the SPT at the location specified
bits 18-35.

This pointer is used for a page map shared by a number of processes.
Switching to another map requires changing only the common SPT entry.

Indirect

3 w c SECTION TABLF INDL-X 'TO SPT LOCATION CONTAINING PACE
INDEX ADDRESS 01, ANOTHER SECTION TADLl<

0 2 4 6 9 17 18 35

In the SPT location specified by bits 18-35 is the page address of a second-
ary section table. The next section pointer to be evaluated is in that table at
the location specified by bits 9-17.

Indirect pointers are used for Monitor reference to per-job and per-
process areas. The pointers remain while the second section table is
swapped with the job or process, or the SPT entry is changed.

Map Pointers. Entries in a page map are of these four types.lg

No Access

0 1 AVAILABLE TO SOFTWARE

0 2

The page is inaccessible.

Immediate

c RESERVE11
STORAGE

RESERVED
PAGF. NUMBER

MI<lIIUM I,‘OR MAPPING

0 2 4 6 12 17 23 3s

If bits 12-17 are zero, the physical page specified by bits 26-35 corresponds
to the referenced virtual page. Otherwise the referenced page is not in
memory.

An immediate pointer contains the page address for the mapping.

KS10 System Operations 4-23

Shared

2 w c RESERVED
INDEXTO SI'I LW‘ATION CONTAINING

PAGE AI)I)RI:SS I,OK MAPPIN<;

0 2 4 6 18 3s

The page address for the mapping for the referenced virtual page is in the
SPT at the location specified by bits 18-35.

This pointer is used for a physical page referenced as different virtual
pages by different programs. The Monitor can move the page simply by
changing the SPT entry.

Indirect

3 w C PAGE MAI' INDtlX TO St'T LOCATION CONTAINING
INIll-.X PAGE AI)I)RI:SS 01' ANOTHICR PAGE MAP

0 2 4 6 9 1718 35

In the SPT location specified by bits 18-35 is the page address of a second-
ary page map. The next map pointer to be evaluated is in that map at the
location specified by bits 9-17.

Refill Procedure. If the page table lacks a valid mapping for a refer-
ence, the pager must evaluate section and map pointers to get the desired
mapping. The procedure begins with the pointer for the section from the
process table, and the pager follows the trail laid by the various pointers, as
illustrated in Figure 4.4. At any step the microcode traps to the Monitor if
it encounters a no-access pointer or a page address that indicates the page
is not in memory. The first part of the procedure, which may go to the SPT
or indirectly through it to other section tables, evaluates section pointers to
arrive at the page address of the page map. Using this physical page num-
ber as the left ten bits of an address and the number of the referenced
virtual page as the right nine bits, the second part of the procedure re-
trieves a map pointer and evaluates it. This part may also go to the SPT or
indirectly through it to other page maps to arrive at a page address for the
mapping. Unless an age trap intervenes, memory status is updated along
the way for any page maps used. If the reference can be made and there is
no age trap for the referenced page, its status is updated including setting
the M bit if the program is writing. The microcode then constructs the
desired mapping, places it in the page table, and returns to the waiting
reference.

4-24 KS10 System Operations

Figure 4.4: TOPS-20 Paging Pointer Evaluation

SPT
PAGE 100

IDATAI

PROCESS TABLE

EXECUTIVE

OR “SER

MOVE 1.3

00 PAGE .

-

c
-

‘0

CST Q PAGE 401

(DATA,

1 SECONDARY

PAGE MAP

PAGE 702

(DATAI
w PAGE

I

- 1

I

I

ADD 5.6

II IWI PAGE

The mapping data is constructed from the result of the pointer evalua-
tion, including the running evaluation of the use bits, and has the format
illustrated in the discussion of the page table. The microcode always places
a 1 in the valid bit to indicate that the virtual page is accessible and this is
a valid mapping for it. C is simply the result of anding the C bits of the
various pointers. M however is not. A refill sets up M according to the type
of reference and the characteristics of the referenced page.

M Effect

Read reference, page not writable.

Read reference, page writable but not
yet modified (according to CST).

Page writable, write reference or
page already modified.

0 An attempt to write will fail.

0 An attempt to write will succeed, af-
ter the mapping is revised.

1 Sets M in CST entry; an attempt to
write will succeed.

Page Failure

When for any reason the pager is unable to make a desired memory refer-
ence, an event known as a “page failure” occurs. For this the microcode
terminates the instruction immediately, without disturbing PC or storing
any results in memory or the accumulators, and executes a page fail trap.21
The trap operation makes use of three locations in the user process table: it
places a page fail word in location 500, identifies the failed state of the
processor by placing the current flag-PC doubleword in locations 501 and
502, sets up PC according to a new value in location 503, and clears the
flags (placing the processor in executive mode). The processor then resumes
operation in the new state at the location now addressed by PC. The same
sequence of events occurs if the processor performs an IO instruction and
the adapter fails to indicate the transfer was accomplished.

There are two kinds of page failures, hard and soft. A hard failure
means that something really is amiss, whereas a soft failure generally
means only that the program requires some kind of service from the Moni-
tor. A hard failure is indicated by a 1 in bit 1 of the page fail word, and the
particular failure is specified by a code (which is therefore > 20) in bits l-5.
There are three such failures of which two are true page failures, i.e. fail-
ures involving memory reference, and for these the page fail word has this
format.

b13(, OR 3710 o[P(000 I i ADDRESS I

0 1 5 8 17 18 35

2o The missing circumstance produces a page failure.

21 A page failure that occurs during an interrupt instruction does not act this way. Instead
the processor halts (04.7).

-

4-26 KS10 System Operations

Whether the violation occurred in user or executive address space is indi-
cated respectively by a 1 or 0 in bit 0; and a 1 or 0 in bit 8 indicates whether
or not a physical address was given for the reference. The code names the
particular failure as follows.

36 Uncorrectable memory error - in a processor reference the memory
controller has read an incorrect word from storage and was unable to
correct it. The processor has saved the word in AC 0 and AC 1, block
7, and has set the Bad Memory flag (RDAPR bit 28).

37 Nonexistent memory - the processor has called for a storage refer-
ence over the bus but the memory controller did not respond. This
error also sets the No Memory flag (RDAPR bit 27).

If the failure code is 20, the fail word instead has this format

u 20 OOlOlOOB IO ADDRESS

0 I 5 8 10 13 14 35

and indicates a nonexistent IO register, i.e. an IO instruction gave an IO
address to which there was no response. A 1 in bit 13 indicates a byte
operation. (The 1s in bits 8 and 10 mean a physical reference and an IO
function on the bus.) Note that this is not an IO page failure, which is a
true (memory) page failure and causes a halt.

A soft failure can result only from actions taken in a refill or writabil-
ity check and is indicated by a 0 in bit 1. This means either an attempt to
write in a write-protected page, or the evaluation procedure encountered
some condition beyond which it could not go - a no-access pointer, an
illegal pointer code, some page (not necessarily the program-referenced
one) not in memory, or an age trap. The fail word still contains the U bit
and the virtual address, but now bits l-8 have one of these formats,

WRITE VIOLATION jo111o1o111010/11 OTHER FAILURE loloibloirioiolll

12345678 12345678

where bit 8 is the inverse of bit 8 in the hard case (1 means virtual), and T
indicates the type of reference in which the failure occurred: 0 for a read-
only reference, 1 for any reference involving writing. A 0 in bit 2 means the
evaluation procedure was incomplete. In the write violation configuration,
the 1 in bit 2 means the procedure was completed, and the 0 in bit 4 comes
from anding the W bits in the string of pointers. The type of reference per se
implies nothing about the cause of failure - it indicates only the reason
the failed reference was being made. Of course T and bit 2 both being 1
implies a write failure.

For a page fail trap, the processor automatically switches to executive
mode. After rectifying the situation, the Monitor eventually returns to the
interrupted instruction, which starts over again from the beginning or from
the stopping position in a multipart instruction. Even a two-part instruc-
tion that has been stopped by a failure in the second part is redone prop-
erly, provided the Monitor restores First Part Done. The mechanism for
making a correct return and the effects it produces on a BLT are the same
as for an interrupt, and are described under the special considerations
given at the end of 84.1. Before returning to the failed instruction, the

KS10 System Operations 4-27

Monitor must invalidate the mapping for the page and revise the pointers
for the new situation. Then when the instruction is restarted, the pager will
do a refill to get the new, correct mapping.

A no-access pointer may imply that the page simply does not exist.
Otherwise a soft failure seldom implies that anything is “wrong.” Consider
a typical case where the Monitor has, for example, ten or twenty pages of a
user program in memory. When the user attempts to gain access to a page
that is not there (i.e. for which the refill encounters a not-in-memory page
address), the Monitor would respond to the failure by bringing in the
needed page from the disk, either adding to the user space, or swapping out
a page the user no longer needs or has not used recently. Similarly a proc-
ess using several sections may have only one in core at a time. While
swapping is in progress, the Monitor runs some other user, returning to the
interrupted job when the requested page is available.

The same situation exists for writability. Keeping track of modified
pages is handled by the refill procedure using the memory status table. But
a page may be write-protected because is it shared by a number of proc-
esses, wherein a change made by one might not be wanted by the others.
Thus in response to a write failure, the Monitor might make a separate
writable copy of the page for the sole use of the process that wishes to
modify it.

The Map Instruction

It is often helpful for the Monitor or a debugging package to be able to
determine how the pager would respond to a particular reference without
actually chancing a page failure. It may also be useful to determine where
a particular virtual page is in physical memory. For such purposes the
processor has this instruction.

MAP Map an Address

I
2.57 A I X Y 1

0 89 12 13 14 17 18 35

If the pager is on, map the page number of the virtual effective address E
and place the resulting physical address and other map data in AC. If the
page is accessible, the information loaded into AC is of the form

uo lMWOOC1 000 PHYSICAL ADDRESS

0123456789 16 17 35

where bits 17-26 are the physical page number the pager supplies for E, bit
0 is 1 or 0 depending on whether the paging is done in user or executive
address space, and M, W and C are page use bits resulting from the pointer
evaluation procedure as explained above. If the page is inaccessible, AC
receives the given virtual address in place of a physical address; the word
also includes U and a 1 in bit 8, but the remaining bits are all zero.

4-28 KS10 System Operations

However, should a memory error occur during the refill, AC receives a
hard page fail word. If the pager is off, the result is undefined.

Notes. The instruction cannot actually fail, because regardless of what
happens, the page fail microcode returns to it instead of trapping to the
Monitor. The effective address calculation done for it could fail however.

4.5 Memory Management

In order properly to manage memory, the executive program must select
the kind of paging, set up process tables and page maps for itself and the
various users, oversee the operation of the page table, and select the fast
memory block to be used by each program (usually block 0 for itself,). At
any given time, accumulator, index register and fast memory references
are made to that AC block that is assigned as “current.” Given a particular
processor mode and an appropriate process table and page map, the Monitor
effectively defines the address space for a process (which may be itself) by
specifying the base address for the process table and selecting the current
AC block.

When a user program calls the Monitor it is usually to request some
activity, which may often require the executive to gain access to the user
address space. To facilitate the crossover from one address space to another,
the same instruction through which the Monitor assigns its own current
AC block also allows assignment of an AC block for the “previous context”
- i.e. the context of the process that made the call. This, together with a
flag that indicates the mode of the caller, allows execution of instructions in
the previous context (more about this subject later). At any point in time,
the previous context is essentially the circumstances in which the previous
process was running. Note that the previous context need not be the user;
the same techniques can be exploited following a call from one level of the
Monitor to another.

For initial setup, the executive program must be cognizant of certain
fundamental characteristics that can vary from one system to another. For
this purpose the instructions for basic management include not only those
that control the pager, but also one that addresses the processor to discover
what those characteristics are. The first five of the following instructions
are for either kind of paging; the remaining eight are solely for handling
the special registers used in the TOPS-20 pointer evaluation.

APRID Arithmetic Procesor Identification

I 70000 r x Y
0 12 13 14 17 18 35

Read the microcode version number, the processor serial number, and a
listing of the fundamental characteristics of the system into location E as
shown. At present there are no microcode or hardware options.

KS10 System Operations 4-29

MICROCODE OPTIONS MICROCODE VERSION NUMBER

I
0 1 2 ' 3 4 5 ' 6 7 8 ' 9 IO I1 ' 12 13 14 ' 15 16 17

HARDWARE OPTIONS PROCESSOR SERIAL NUMBER

18 19 20 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 1 33 34 35

WREBR Write Executive Base Register

70120 r x Y
I

0 12 1314 1718 35

Set up the system-oriented characteristics of the pager according to the
effective conditions E as shown.

TOPS-20 ENABLE
PAGING PAGER

EXECUTIVE BASE ADDRESS (PAGE NUMBER)

I

18 19 20 21 22 23 ' 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35

Load bits 25-35 into bits 16-26 in the executive base register (EBR in the
register file) to select the executive process table. If bit 22 is 1 enable
overflow trapping and enable the pager for the type of paging selected by
bit 21: 1 TOPS-20, 0 TOPS-lo. A 0 in bit 22 prevents traps and disables
paging so all memory references are to physical locations unpaged.22

CAUTION

Paging can be disabled only for executive mode. A user mode
program will not run correctly unless the pager is turned on.

Invalidate the entire cache and page table by clearing the valid bits in
all entries.

RDEBR Read Executive Base Regi: ter

L 70124 / x Y I

0 12 13 14 17 18 35

Read the system status of the pager int the right half of location E. The
information read is the same as that sup blied by WREBR.

22 Note that disabling the pager does not mean ther can be no page failures, as these can be
caused by conditions having nothing to do with >aging, i.e. with translating virtual to
physical addresses.

4-30 KS10 System Operations

WRUBR Write User Base Register

70114 14 ‘7 I
0 12 13 14 17 I8 35

Set up the process-oriented elements of the pager according to the contents
of location E as shown.

SELECT JAD
USER

CURRENT PREVIOUS

AC
BLOCKS BASE AC BLOCK

CONTEXT
AC BLOCK

ADOQLSS
I

0 I 2 3 4 5 6 7 8 9 IO II 12 13 14 ' 15 16 17

-
USER BASE ADDRESS (PAGE NUMBER)

18 19 20 ' 21 22 23 1 24 25 26 1 27 2B 2g 1 30 3, 32 1 33 34 35

Bits 0 and 2 are change indicators for parts of the data word: when a bit is
0, the corresponding part of the word is ignored, and the equivalent value
supplied by a previous WRUBR remains in effect.

If bit 0 is 1, select as the current and previous context AC blocks those
specified by bits 6-8 and 9-11, respectively. If bit 2 is 1, load bits 25-35 into
bits 16-26 in the user base register (UBR in the register file) to select the
user process table, and invalidate the entire cache and page table by clear-
ing the valid bits in all entries.

RDUBR Read User Base Register

70104 I x Y I
0 I2 13 14 17 18 35

Read the process status of the pager into location E. The information read
is the same as that supplied by a WRUBR (bits 0 and 2 are Is).

CLRPT Clear Page Table Entry

70110 I x Y 1
0 12 13 14 17 18 35

Invalidate the page table mapping entry for the page referenced by E, and
invalidate the entire cache.

WRSPB Write SPT Base Address

70240 I x Y 1
0 12 13 14 1718 35

Load the contents of location E into the SPT base register in the workspace.

KS10 System Operations 4-31

RDSPB Read SPT Base Address

1 70200 111 x 1 Y
0 12 13 14 17 18 35

Read the contents of the SPT base register into location E.

WRCSB Write CST Base Address

70244 III x I
0 I2 13 14 17 18 35

Load the contents of location E into the CST base register in the workspace.

RDCSB Read CST Base Address

70204 I x Y
0 I2 13 14 I7 I8

Read the contents of the CST base register into location E.

35

WRCSTM Write CST Mask

70254 I x Y
0 121314 17 18 35

Load the contents of location E into the CST mask register in the work-
space for use as the mask in CST updating.

RDCSTM Read CST Mask

70250 I x Y
0 12 13 14 I7 I8

Read the contents of the CST mask register into location E.

35

WRPUR Write Process Use Register

70214 I x Y

0 121314 17 18 35

Load the contents of location E into the process use register in the work-
space for use as the process use word in CST updating.

4-32 KS10 System Operations

RDPUR Read Process Use Register

70210 111 x 1 Y
0 I2 1314 1718 35

Read the contents of the process use register into location E.

At power turnon the contents of the cache and page table are indeter-
minate, the processor is in executive mode, paging is disabled, and the
current AC block is 0. After the console loads the microcode, it then loads
the initializing executive program. This program, running unpaged in phy-
sical memory, should give an APRID to determine system characteristics.
The unpaged program ends with a WRRBR that selects and enables paging,
specifies the executive base address, and invalidates the cache and page
table. From this point the executive program runs paged and must set up
the first user or users, loading the user process tables and page maps, and
bringing in whatever parts of user programs and data that are consistent
with good working-set management. Finally the Monitor gives a WRUBR
to assign the base address and current AC block for the first user, and then
transfers control to the user program via an XJRSTF or JRSTF.

On a call from the user via an MUUO, give an RDUBR to determine
the context of the user, i.e. his AC block. Then give a WRUBR that assigns
block 0 as current for the Monitor, assigns the user AC block as previous
context for accessing user space, but leaves the base address alone so the
right paging is still available for such access. To return to the same user,
reassign the AC block without changing the base address. Note that on the
transfer to a user program no previous context AC block need be given as
the user cannot employ PXCTs.

The usual procedure for administering AC blocks is to assign block 1 to
all users and assign two or three blocks for the sole use of interrupt
routines. Suppose the assignments are: block 0 for the Monitor, block 1 for
all users, block 2 for the highest priority interrupt level, block 3 for the
second highest level, and block 4 for all other levels. Then in no circum-
stances is it necessary to determine which block to save, and interrupt
routines on the highest, second highest and lowest levels need not save any.
Moreover the Monitor need not even store block 1 when it takes control
from a user temporarily. When switching from one user to another, the
Monitor usually stores the first user’s accumulators in his process table or
shadow area - this is locations O-17 in user virtual page 0, an area not
generally accessible to the user at all - and loads the new user’s accumula-
tors from his process table or shadow area, where they were stored after the
last time the new user ran

On a change from one process to another the entire page table must be
invalidated, but this is done automatically by the instruction that assigns
the new user base address. If the system uses shared or indirect pointers, or
several virtual page numbers point to the same physical page, then the

June 1982 KS10 System Operations 4-33

table must be invalidated whenever a page is removed from memory or a
pointer is removed from a user page map. On the other hand deletion of a
page with a unique mapping requires only that a CLRPT be given to invali-
date the entry containing it.

Previous Context Execute

Ordinarily an instruction in a user program is performed entirely in user
address space, and an instruction in the executive program is performed
entirely in executive address space. But to facilitate communication be-
tween Monitor and users, the executive can execute instructions in which
selected references cross over the boundary between user and executive
address spaces. This feature is implemented by the previous context exe-
cute, or PXCT, instruction. The mnemonic PXCT is for convenience only
and has no meaning to the assembler; it is used simply to indicate an XCT
with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a
program in the current context, some of the references made by the exe-
cuted instruction can be in the previous context. A PXCT can be given only
in executive mode, but the previous context may be the user, as following a
call to the Monitor by the user. The previous context can however be the
executive, to allow communication between one level of the executive pro-
gram and another, as when the Monitor gives an MUUO to itself. (Note: it
is not intended that PXCT be used by the Monitor for unsolicited references
to a user program.)

It is very important to understand just which operations are affected by
a PXCT and which are not. The only difference between an instruction
executed by a PXCT and an instruction performed in normal circumstances
is in the way certain of its memory and index register references are made.
To work as a PXCT, an XCT must be given in executive mode, and the bits
in its A field (9-12) must not all be 0 (in user mode A is ignored). But there
is otherwise no difference in the way the XCT itself is performed: every-
thing in the PXCT is done in the current (executive) context, and the in-
struction to be executed by the XCT is fetched in the current context. More-
over in the executed instruction, all accumulator references (specified by
bits 9-12 of the instruction word) are in the current context. (Remember
that the executive can always access a user accumulator simply by address-
ing it as a fast memory location.) If the instruction makes no memory
operand references, as in a shift or immediate mode instruction, and it has
no indexing or indirection (i.e. the instruction word gives E directly), then
its execution differs in no way from the normal case. The only difference is
in memory and index register references.

The previous context is specified by two quantities. Following a call by
an MUUO, the fast memory block assigned to the calling program appears
as the current context AC block in the word read by an RDUBR. For the
called program, this value can then be assigned as the previous context by
a WRUBR. The current AC block of the calling.program also appears in the
process context word supplied by the MUUO. Various levels of the Monitor
may all use fast memory block 0; or a separate block may be assigned to
that part of the Monitor that uses PXCTs in handling MUUO calls from
other parts of the Monitor.

-

KS10 System Operations

Just as the current mode is indicated by the User flag, the mode in
which the calling program was running is indicated by Previous Context
User.24 At a call this flag may be set up automatically or it may be set up by
a flag-PC doubleword or a PC word. Note that the restrictions on references
made in the previous context are those of the previous context - not those
of the context in which the ‘PXCT is given Suppose the executive executes
an instruction that references an inaccessible user area. Such a reference
would fail.

Which references in the executed instruction are made in the previous
context is determined by 1s in the A portion of the PXCT instruction word
as follows.

Bit References Made in Previous Context if Bit is 1

9

10

11

12

Effective address calculation of instruction, including both instruc-
tion words in EXTEND (index registers, address words by
indirection); also EXTEND effective address calculation of source
pointer if bit 11 is 1 and of destination pointer if bit 12 is 1

Memory operands specified by E, whether fetch or store (e.g. PUSH
source, POP or BLT destination); byte pointer; second instruction
word in EXTEND

Effective address calculation of byte pointer; source in EXTEND; ef-
fective address calculation of EXTEND source pointer if bit 9 is 1

Byte data; stack in PUSH or POP; source in BLT; destination in
EXTEND; effective address calculation of EXTEND destination
pointer if bit 9 is 1

Previous context referencing is useful and reasonable in some instruc-
tions but inapplicable to others. There is no trap of any kind, and the effect
of using the feature with an instruction to which it does not apply is simply
undefined.

Applicable

Move, XMOVEI
EXCH, BLT, XBLT
Half word, XHLLI
Arithmetic
Boolean
Double move
CAI, CAM
SKIP, AOS, SOS
Logical test
PUSH, POP, ADJSP
Byte
MAP

Inapplicable

LUUO, MUUO
AOBJN, AOBJP
JUMP, AOJ, SOJ
JSR, JSP, JSA, JRA, JRST
PUSHJ, POPJ
XCT, PXCT
Shift-rotate
String
IO
System (except MAP)

24 Previous Context User is in the same flag bit that is used for User In-out, which has no
meaning in executive mode.

June 1982 KS10 System Operations 4-35

Note that no jumps can use previous context referencing. Even among
the instructions to which such referencing is applicable, only a limited
number of the sixteen possible bit combinations is useful or meaningful.
Doing an effective address calculation in the previous context (selected by
bit 9 or 11) makes sense only if the corresponding data access is also in the
previous context (as selected by bit 10 or 12 except 11 or 12 in EXTEND).
Only these combinations are permitted.

XBLT 0 0 1 0 Source
0 0 0 1 Destination
0 0 1 1 Source, destination

Stack 0 0 0 1
0 1 0 0
0 1 0 1
1 1 0 0
1 1 0 1

Stack
Memory data
Memory data, stack
E, memory data
E, memory data, stack

Byte

Instructions 9 10 11 12 References in Previous Context

General 0 1 0 0
1 1 0 0

Immediate 1 0 0 0

BLT 0 0 0 1
0 1 0 0
0 1 0 1
1 1 0 0
1 1 0 1

Data
E, Data

E

Source
Destination
Source, destination
E, destination
E, source, destination

0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

Data
Pointer E, data
Pointer, pointer E, data
E, pointer, pointer E, data

The most frequent use of previous context referencing is simply for the
transfer of words between user and executive. For this reason the processor
has these two convenient instructions.

UMOVE User Move

704 A 1 X Y I
U 89 la 1314 I7 Ill 3s

Perform the same function as PXCT 4,IMOVE A&l. However, whereas a
PXCT can be performed only in executive mode, UMOVE can also be done
in user in-out mode.

4-36 KS10 System Operations June 1982

UMOVEM User Move to Memory

705 A 1 X Y
1

0 89 12 I3 14 17 18 35

Perform the same function as PXCT 4,[MOVEM A,E]. However, whereas a
PXCT can be performed only in executive mode, UMOVEM can also be
done in user in-out mode.

4.6 System Timing

The timer includes a 12-bit hardware millisecond counter, a doubleword
time base kept from it, and an interval register for timed interrupts. The
millisecond counter runs continuously at 4.1 MHz and represents an
elapsed time of just under 1 ms at each overflow. Whenever the counter is
read, its two least significant bits are ignored, so its contents effectively
represent a count in microseconds (111025th ms).

The time base is a double length number kept in a pair of registers in
the workspace. It is a 71-bit unsigned quantity in which the entire first
word comprises the high order thirty-six bits, and the low order thirty-five
are in bits 1-35 of the second word.25 In this doubleword, the hardware
counter corresponds to the right twelve bits of the low order word. The
program can initialize the time base as a number of milliseconds (the low
order twelve bits are ignored), and every time the counter overflows the
microcode adds 2” to the base.

The interval register (in the workspace) holds a period that is specified
by the program and corresponds in magnitude to the low order word of the
time base. This allows a maximum interval of 223 ms, which is almost 140
minutes. At the end of each interval, the microcode sets Interval Done
(RDAPR bit 30), requesting an interrupt on the level assigned to the sys-
tem flags ($4.8). In a separate workspace register, the microcode starts with
the given period, decrements it by 212 every time the millisecond counter
overflows, and sets the flag when the contents of this “time to go” register
reach zero or less. Hence the countdown is by milliseconds, and any nonzero
quantity in the low order twelve bits of the given period adds a whole
millisecond to the count. (However, following specification of an interval by
the program, the first downcount occurs at, the first counter overflow re-
gardless of when the register was loaded.)

The processor has these instructions for the program to handle the time
base and the interrupt interval.

25 Remember, it is a property of twos complement arithmetic that the sign can be used as an
extra magnitude bit in an unsigned number. But since the hardware is set up for signed
arithmetic, bit 0 of any lower order word must be skipped.

KS10 System Operations 4-37

WRTIM Write Time Base

1 70260 III x I Y 1
0 12 1314 1718 35

Read the contents of location E,E+l, clear the right twelve bits of the low
order word read (the part corresponding to the hardware millisecond
counter), and place the result in the time base registers in the workspace.

RDTIM Read Time Base

I 70220 I x Y
0 I2 1314 1718 35

Read the contents of the time base registers, add the current contents of the
millisecond counter to the doubleword read, and place the result in location
E,E+l.

WRINT Write Interval

70264 II1 x 1 Y 1
0 I2 1314 17 18 35

Load the contents of location E into the interval register in the workspace.

RDINT Read Interval

70224 III x I
0 12 13 14 1718 35

Read the contents of the interval register into location E. The period read is
the same as that supplied by WRINT.

4.7 Halt Status

Whenever the processor halts, the microcode places a halt code, giving the
reason for the halt, in physical (i.e. storage) location 0, and places PC in
physical location 1. Except at error-free powerup, it then saves the register
file and VMA in a halt status block beginning at a physical location speci-
fied by the program, although the program can inhibit storing of halt status
altogether. The registers saved in the status block are as follows.

.-

4-38 KS10 System Operations

Location, Register

0 MAG

1 PC

2 HR

3 AR

4 ARX

5 BR

6 BRX

7 ONE (1)

10 EBR

11 UBR

12 MASK

13 FLG (flags, page fail code)

14 PI

15 XWDl (l,,l)

16 TO

17 Tl

20 VMA (with flags)

Halt codes in the range O-77 are used for “normal” halts. Codes in the
ranges loo-777 and 1000 or greater respectively indicate software and
microcode/hardware failures. Codes currently assigned are these.

Code Halt Condition

0

1

2

100

101

Microcode just started; on this halt no status block is stored

Program gave a HALT (AR and PC contain E)

Console halted the processor

IO page failure

Illegal interrupt instruction

If halt occurs on a vector interrupt, status block contains
these quantities:

TO Vector as read from bus

ARX EPT address + 100 + adapter number

BR Address of illegal instruction

BRX Vector masked and shifted

102

1000

1005

Zero table pointer for vector interrupt (for contents of TO
and ARX, see code 101)

Error in BWRITE dispatch on dispatch ROM

In powerup sequence, processor got wrong result when com-
puting table of powers of 10 for use by string microcode (BR
and ARX contain high and low words of incorrect 10zl)

KS10 System Operations 4-39

At powerup the microcode assigns an address of 376000 for storing halt
status. The program can change the assignment at any time using these
instructions.

WRHSB Write Halt Status Block Base Address

I 70270 111 x I Y I
0 12 13 14 17 18 35

Load the contents of location E into the halt status block base register in
the workspace. If bit 0 of the word in E is 0, bits 17-35 will be used as the
physical address for storing halt status. But if bit 0 is 1, no status will be
stored.

RDHSB Read Halt Status Block Base Address

70230 III x 1 Y
0 12 13 14 17 18 35

Read the contents of the halt status block base register into location E.

4.8 System Conditions

This section discusses special logic through which the program controls and
receives information about other parts of the system, specifically memory
and the console. Any program also has considerable dealings with the pe-
ripheral equipment, but that is another subject.

System Flags

Four of these eight flags are set by memory hardware error conditions. Two
others are used for communication between processor and console, and one
is used by the microcode to signal completion of an interval count. The
program can enable any flag to request an interrupt on a level assigned to
them all. There are of course other error indications besides the flags. A
parity error in the internal data paths of the processor causes the console to
shut down the system by turning off the processor clock. Software errors in
the handling of interrupts and some processor hardware failures cause the
microcode to halt the processor as discussed in 04.7. And yet other condi-
tions cause page failures.

The system flags are generally regarded as important enough to be
assigned to the highest priority level. However for most conditions the com-
mon practice is for the interrupt to switch over to the lowest priority level
by means of a program-set request. Then the time taken to handle the

4-40 KS10 System Operations

situation, which may well be considerable, cannot interfere with high prior-
ity events.

The flags are handled by these two instructions.

WRAPR Write System Flags

I 70020 r x Y
I

0 12 13 14 17 18 3s

Assign the interrupt level specified by bits 33-35 of the effective conditions
E and perform the functions specified by bits 20-31 as shown (a 1 in a bit
produces the indicated function, a 0 has no effect).

Then after 300 ns clear the Interrupt Console flag.
Bits 20-23 select flag functions: 1s in these bits produce the indicated

effects on the system flags selected by 1s in bits 24-31. A 1 in bit 20 enables
the setting of any selected flag to request an interrupt on the level assigned
to the flags; a 1 in bit 21 disables the selected flags from requesting inter-
rupts. Similarly a 1 in bit 22 or 23 clears or sets the selected flags. The
result of putting 1s in both bits 20 and 21 or 22 and 23 is indeterminate.

The reason for clearing Interrupt Console is to provide a pulse on the
signal line to the console in case the instruction has set the flag. Pulsing
the line triggers an interrupt in the console microprogram.

Notes. Except for Flag 24 (which has no defined meaning) and Inter-
rupt Console, the program setting a flag has no relation to what the flag
represents - the function is used only to check out the flag logic.

RDAPR Read System Flags

70024 I x Y
0 12 1314 17 18 35

Read the status of the system flags into location E as shown (asterisks
indicate bits that can cause interrupts).

* * * * * * * *

BAD PRIORITY
rinc, 24 0 POWER NO MtMORY “$y;;y” iNTtR”nL CONSOLL INTRLlPT INTERRUPT

FI\IL”HE M6MOR” DA,I\ DI\TI\ O”NF INTRUPT RFix”FST ASSIGNMENT

I I I I I I

18 19 20 ' 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

KS10 System Operations 4-41

6-13

24

25

26

27

28 In a read reference by the processor, the word retrieved (and sent)
was wrong and the memory circuits were unable to correct it. Note
that this condition also produces a page failure.

29 In a read reference by the processor, the word retrieved was wrong
but the memory circuits were able to correct it.

30 The microcode has completed a count of the interval specified by
the program.

31 The console is requesting a processor interrupt.

32 Some system flag is currently requesting an interrupt, i.e. some
flag in bits 24-31 is set and has been enabled to interrupt as indi-
cated by a 1 in the corresponding position in bits 6-13.

A 1 in any of these bits indicates that setting the listed flag will
request an interrupt on the level assigned to the flags by bits 33-35
of the WRAPR.

Spare - available to the program for any purpose.

When read, this flag should always be 0, as any WRAPR that sets
it also clears it to provide a pulse on the interrupt line to the con-
sole.

AC power has failed. The program should execute some agreed-upon
shutdown procedure and halt the processor. Note that PC may
point to an interrupt routine rather than the main program. After
power is restored the console must reboot the system, and the Moni-
tor must reestablish the operating environment (§4.5).

The processor was granted the bus for access to memory, but the
memory controller did not respond within two bus cycles. This is
most likely because the memory subsystem contained no array
board corresponding to the address given, or there has been a re-
fresh error. Note that this condition also produces a page failure.
Since a nonexistent memory supplies zero data, on read this error
may be accompanied by a 1 in bit 28.

Programming Cautions. When handling bad data or nonexistent
memory interrupts, the programmer should beware of the following.

NOTE

In general it is better not to use the interrupt for these condi-
tions, as the page failure provides more information. More-
over if the interrupt is used, the processor interrupts out of
the page failure, which occurs first.

-

4-42 KS10 System Operations

l Should an error flag be set while another interrupt request is being
processed, the system would handle the lower priority interrupt before get-
ting to the flag interrupt. This means PC may be pointing to a lower level
interrupt routine rather than the program level at which the error oc-
curred.
l Even without inadvertent interference from another level, the proces-
sor may perform another instruction between the time the error flag sets
and its interrupt starts. Hence even though PC is at the correct program
level, it may be pointing to the instruction following the one in which the
error occurred.
l An error interrupt that switches over to a lower priority level should not
return to the interrupted program, as the error may simply recur, produc-
ing a second flag interrupt before the error-handling interrupt for the first.
This could happen because PC is actually pointing to the offending instruc-
tion, but beyond that, one error often begets another - consider the case of
PC counting into a nonexistent memory. In any event, it is generally not
worthwhile to return to any program without first finding out what has
gone wrong.

Memory Status

The memory controller reports information on error conditions by means of
status that the program (or operator) can read or test using IO instructions
that address the controller (IO address 0100000). Note that the errors re-
ported may have nothing whatever to do with the program or processor:
they may be the result of access by an adapter or the console. On every
access the controller regularly loads the address and, if read, the error
correction code into the status register. But if a read error (incorrect data
read from the storage array) or refresh error occurs, the address and code
are held - even through other errors - until the processor or console
writes a status word that clears the holding flag.

The remainder of this section identifies the information read as status
and the functions that can be performed by writing status. For advice on
how to use the information for diagnosing memory problems, the reader
should turn to the maintenance documentation.

Read Status

UNCOR- ERROR RECTAIBLE RtFRtSH PARITY ECC ERROR CORRECTION CODE rOWER
HIGH ORDER

HOLD ERROR EHROR LRR’JR ON FAILED ADDRESS BITS
HOLD

CP 1 c40 1 c20 1 Cl0 1 c4 I c2 1 Cl I 1 1

0 I 2 3 4 5 ' 6 7 8 19 IO I1 12 13 14 1 15 16 17

I LAST ADDRESS OR FIRST E RROR A .DDRESS

I

1 1 I 1 I I I 1 1 I 1 I I I I 1

18 ’ 19 20 21 22 23 ' 24 25 26 I 27 28 29 ' 30 31 32 1 33 34 35

KS10 System Operations 4-43

0 The memory controller has detected a read error or a refresh error
(bit 3) and has held the error correction code in bits 5-11 and the
address supplied over the bus in bits 14-35.

1 The code and address are being held for a read error in which the
data read was uncorrectable.

2 A refresh cycle was still not finished 10.3 ks after the refresh logic
requested it. The most likely cause is that the memory cycle logic
was waiting for write data that failed to arrive. Setting this flag
both clears and shuts down the cycle logic, so refreshing can con-
tinue but the memory is unavailable to the rest of the system
until a write status clears the flag.

3 A parity error has been detected in information (commandad-
dress, data, status) received by the memory controller over the
bus. This error indication is sent to the console, which may re-
spond by turning off the processor clock.

4 The error correcting circuits are active.

5-11 This is the error correction code for the last read data access,
unless bit 0 is 1, in which case it is the code for the cycle on which
a read error occurred or for the last read access before a refresh
error.

12 Battery backup power (if present) is low, and will not be able to
sustain memory refresh in the event of an ac power failure.

14-35 This is the address supplied in the last bus transaction with mem-
ory, unless bit 0 is 1, in which case it is the address used in the
data access that caused the error hold (a read address on a read
error, a write address on a refresh error).

Write Status

1 I I I I I I I I I I I I I I I I I J
0 I 2 ’ 3 4 5 I 6 7 81 9 10 I1 ’ 12 I3 14 ’ 15 16 I7

FORCE CHECK BITS
ECC
OFF

1 I 1 I I I I I I CP 1 c40 1 c20 1 Cl0 I c4 1 c2 1 Cl

I8 19 20 ’ 21 22 23 1 24 25 26 1 27 28 29 1 30 31 32 ’ 33 34 35

0

2

3

12

A 1 in this bit clears Error Hold, which in turn clears Uncorrect-
able Error Hold and drops the hold on the error code and address.

A 1 clears Refresh Error.

A 0 clears Parity Error, but a 1 sets it allowing checkout of the
associated logic.

A 0 clears Power Failed.

4-44 KS10 System Operations

28-34 A nonzero code forces the indication of errors where none exist,
allowing checkout of the error detection and correction circuits.

35 A 1 disables the error correcting circuits. A 0 restores them to
their normal, active state.

KS10 System Operations 4-45

Chapter 5

KIIO and KAI 0 System Operations

The information presented in this chapter is primarily for Digital’s own
system programmers, for their use in writing the Monitor and other soft-
ware. However it is also needed by anyone who wishes to write his own
operating system, to some extent by users who handle their own IO, and by
programmers in a situation where all the facilities of a system are dedi-
cated to a single large task.

Programming for the system as a whole is programming in executive
mode. In the KIlO executive mode is divided into kernel and supervisor
modes. Only the kernel program is without instruction restrictions, and
only it can access physical core unpaged. The supervisor program labors
under the same instruction restrictions as the user and has no way of
bypassing them, although it can read but not alter concealed pages (the
kernel program can supply data tables to the supervisor program, and the
latter cannot affect them). In the KAlO the executive program has no re-
strictions, and it manages protection and relocation hardware that is appli-
cable only to the user.

The amount of useful work done by the system depends upon how
efficiently and effectively the executive manages the system. This means
selecting which processes will run when, managing their working areas,
responding to their needs, and even reacting to error situations or perhaps
downright unacceptable behavior on the part of the user. The KIlO kernel
program accomplishes these objectives by handling all in-out for the sys-
tem, setting up page maps, trap locations, interrupt locations and the like
for both itself and the users, keeping job accounts, and so forth. The KAlO
executive program also handles in-out, job accounts and interrupts, but it
manages the user working space by setting up protection and relocation
registers, and it takes care of arithmetic and stack overflow via the inter-
rupt.

5-l

Except for handling in-out, the activities of an operating system are
the topics covered in this chapter. The first section, on the console, is appli-
cable to both processors. The basic system information is covered in three
sections separately for each: S&5.2--5.4 for the KIlO, 005.5-5.7 for the KAlO.
The last section discusses the DKlO real time clock, which is used in both.
Of course the system programmer must also be quite familiar with all of
the material presented in Chapters 1 and 2. In particular he must fully
understand the architecture of the system as discussed in Chapter 1, and
must be especially well versed in the use of the JRST instruction, MUUOs,
and IO instructions (li§2.9, 2.16, 2.18).

In several of the CON1 bit assignment drawings in this chapter, bits
that can cause interrupts are indicated by asterisks.

5.1 Console

Most console operations are entirely manual, and these are described in
Appendix F. However the program can communicate with the console in a
limited way, and the programmer must be familiar with the format and
execution of the readin function.

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. Its principal use is to read in a short loader
program which is then used for loading other information. A loader pro-
gram should ordinarily be used rather than readin mode, as a loader can
check the validity of the information read.

Pressing the readin key on the console activates readin mode by start-
ing the processor in a special hardware sequence that simulates a DATA1
followed by a series of BLKI instructions, all of which address the device
whose code is selected by the readin device switches at the left just above
the console operator panel. Various devices can be used, and for each there
are special rules that must be followed. But the readin mode characteristics
of any particular device are treated in the discussion of the device (paper
tape, DECtape, and standard magnetic tape). Here we are concerned only
with the general characteristics.

The information read is a block of data (such as a loader program)
preceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word.

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. This key function
first duplicates the action of the console reset key, which clears both the
processor and the in-out equipment; in particular it places the processor in
executive mode, and in the KIlO selects kernel mode with executive paging
disabled, so all access will be to the first 256K of physical memory unpaged.
Following this the processor places the device in operation, brings the first
word (the pointer) into location 0, and then reads the data block, placing

-’

5-2 KIlO and KAlO System Operations

the words in the locations specified by the pointer. Data can be placed
anywhere in the first 256K of memory (including fast memory) except in
location 0. The operation affects none of memory except location 0 and the
block area.

Upon completing the block, the procesor leaves readin mode and begins
normal operation. This is done in the KIlO by jumping to the location
containing the last word in the block, in the KAlO by executing the last
word as an instruction. In the KAlO the processor stops after executing the
first instruction if the single instruction switch is on.

Console-Program Communication

Neither the processor nor the priority interrupt system require all four
types of IO instructions, so the program can make use of their device codes
for communicating with the console. Both processors have two instructions
that transfer data between the console and program. But in the KIlO, the
program can actually operate some of the switches on the console. For this
purpose it uses a data-out instruction with the device code for the paper
tape reader (an input-only device). The KIlO program can also inspect the
states of a number of operating and sense switches, but the bits for these
are included in the left half words of the standard input conditions for the
interrupt and processor (885.2, 5.3).

DATAI APR, Data In, Console

70004 I x Y 1
0 12 13 14 17 18 35

Read the contents of the console data switches into location E.
Notes. MACRO also recognizes the mnemonic RSW (Read Switches) as

equivalent to DATA1 APR,.

DATA0 PI, Data Out, Console

70054 I x Y
0 12 13 14 17 18 35

Unless the console MI program disable switch is on, display the contents of
location E in the console memory indicators and turn on the triangular
light beside the words PROGRAM DATA just above the indicators (turn off
the light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi-
tion selected from the console (Appendix F) can load them until the opera-
tor turns on the MI program disable switch, executes a key function that
references memory, or presses the reset key.

KIlO and KAlO System Operations 5-3

DATA0 PTR, Operating Data Out, Console

71054 I x Y
0 121314 17 18 35

Unless the MI program disable switch is on, set up the console address and
address-condition switches according to the contents of location E as shown
(a 1 in a bit turns on the switch, a 0 turns it off).

INST DATA ADDRESS EXEC USER
FETCH FETCH WRITE

BREAK PAGING PAGING

1

0 I

2

3
4

5 6
: 7

8

I r___________-------

I I I ADDRESS SWITCHES 1
0 6 14 35

For complete information on the use of these switches, see Appendix F.l.
Notes. On the KIlO console, all switches are pushbutton flip-flop combi-

nations; the instruction of course controls the flip-flops, not the buttons.

5.2 KllO Priority Interrupt

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service
them, but they must be serviced within a short time after they request it.
Failure to service within the specified time (which varies among devices)
can often result in loss of information and certainly results in operating the
device below its maximum speed. The priority interrupt is designed with
these considerations in mind, i.e. the use of interruptions in the current
program sequence facilitates concurrent operation of the main program and
a number of peripheral devices. The hardware also allows conditions inter-
nal to the processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven levels arranged in a pri-
ority chain, with assignment of devices to levels entirely at the discretion of
the programmer. To assign a device to a level, the program sends the num-
ber of the level to the device control register as part of the conditions given
by a CON0 (usually bits 33-35). Levels are numbered 1-7, with 1 having
the highest priority; a zero assignment disconnects the device from the
interrupt levels altogether. Any number of devices can be connected to a
single level, and some can be connected to two levels (e.g. a device may
signal that data is ready on one level, that an error has occurred on an-
other).

When a device requires service it sends an interrupt request signal
over the in-out bus to its assigned level in the processor. The processor
accepts the request depending upon certain conditions, such as that the
level must be active (on). The request signal remains on the bus until
turned off by an appropriate response from the processor: either given by
the program (CONO, DATA0 or DATAI, depending on the device), or gen-
erated automatically by the hardware. Thus if a request is not recognized

5-4 KIlO and KAlO System Operations

or accepted when made, it will be when conditions are satisfied. A single
level will shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waiting
with another request. The program can usually trigger a request from a
device but delay its acceptance by turning on the level later.

The request signal is generally derived from a flag that is set by vari-
ous conditions in the device. Often associated with these flags are enabling
flags, where the setting of some device condition flag can request an inter-
rupt on the assigned level only if the associated enabling flag is also set.
The enabling flags are in turn controlled by the conditions supplied to the
device by a CONO. For example, a device may have half a dozen flags to
indicate various internal conditions that may require service by an inter-
rupt; by setting up the associated enabling flags, the program can deter-
mine which conditions shall actually request interrupts in any given cir-
cumstances.

Having accepted a request, the processor will do nothing further with it
unless the priority interrupt system is on. But even with the system off, the
processor will continue to accept requests on other levels; and when the
system is finally turned on, it will respond as though all requests had just
been accepted, handling the highest priority one first.

Starting an Interrupt

A request made to an active level is accepted immediately unless some
level is already waiting for an interrupt to start or an interrupt is starting
for some level. Once a request is accepted with the system on, the level
must wait for the interrupt to start. The processor however will delay any
action on the request if it is already holding an interrupt for the same level
or for a level with priority higher than those on which requests have been
accepted (in other words if the current program is a higher priority inter-
rupt routine). When a waiting level has priority higher than the current
program, the processor sends an interrupt-granted signal for the waiting
level that has highest priority. This action makes use of the IO bus. Should
the bus be busy, the grant is sent as soon as the bus becomes available,
taking precedence over any IO instruction that may also be waiting (note
that in this situation the program actually stops). The grant signal goes out
on the bus and is transmitted serially from one device to the next. Upon
receiving the grant, a device that is not requesting an interrupt on the
specified level sends the signal on to the next device. A device that is
requesting an interrupt on the specified level terminates the signal path
and sends an interrupt function word back to the processor. Note that there
are therefore two orders of priority associated with an interrupt: first the
level, and then for all devices requesting interrupts simultaneously on the
same level, proximity to the processor on the bus. For priority purposes, all
devices on the left bus are closer than those on the right bus.

Upon receipt of the function word, the processor stops the current pro-
gram at the first allowable point to start an interrupt for the waiting level
for which the grant was made. Allowable stopping points are at the comple-
tion of an instruction, following the retrieval of an address word in an
effective address calculation (including the second calculation using the

KIlO and KAlO System Operations &5

pointer in a byte instruction), between transfers in a BLT, between steps in
the calculation of the first part of the quotient in double floating division,
and while an IO instruction is waiting for the bus. When an interrupt
starts, PC points to the interrupted instruction, so that a correct return can
later be made to the interrupted program.

The action taken by the processor in starting an interrupt depends
upon the function specified by the function word returned to the processor.
Two fixed locations in the executive process table are associated with each
level: locations 40 + 2N and 41 + 2N, where N is the level number. Level
1 uses locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which
uses 56 and 57. The processor starts a “standard” interrupt for level N by
executing the instruction in the first interrupt location for the level, i.e.
location 40 + 2N. The fixed locations however need not be used. The inter-
rupt function word sent by the device may specify a standard interrupt
using the fixed locations, or an equivalent interrupt using a pair of loca-
tions specified by the function word, or some other interrupt function en-
tirely. The format of the function word and the operations the processor
performs in response to the function selected by bits 3-5 of the word are as
follows.

FUNCTION

\

INCREMENT INTERRUPT ADDRESS
I

3 56 17 18 3s

Bits 3-5 Interrupt Function

0 Processor waiting. If no response, perform a standard interrupt
(see function 1).

A device designed originally for use with the KAlO will
work when connected to the KIlO bus, where it always requests
a standard interrupt by providing no response to the grant.
Note that for simultaneous requests on a given level, all KIlO
devices that return a function word have priority over all KAlO
devices and over any KIlO devices that do not return a function
word. The last group includes the reader, punch and console
terminal, which are contained in the processor, as well as the
processor itself acting as a device (see processor conditions,
65.3).

1 Standard interrupt - execute the instruction in location 40 +
2N of the executive process table.

2 Dispatch - execute the instruction in the location specified by
bits 18-35.

3 Increment - add the contents of bits 6-17 to the contents of the
location specified by bits 18-35. The increment is a fixed point
number in twos complement notation, bit 6 being the sign, and
bit 17 corresponding to bit 35 of the memory word.

KIlO and KAlO System Operations

4 DATA0 - do a DATA0 for this device using the contents of bit
18-35 as the effective address.

5 DATA1 - do a DATA1 for this device using the contents of bit
18-35 as the effective address.

6 Reserved (produces a standard interrupt).

7 Reserved (produces a standard interrupt).

Regardless of what mode the processor is in when an interrupt occurs,
the interrupt operations are performed in kernel mode. No interrupt opera-
tion can set Overflow or either of the trap flags; hence an overflow trap can
never occur as a direct result of an interrupt. A page failure that occurs in
an interrupt operation is never trapped; instead it sets the In-out Page
Failure flag, which requests an interrupt on the level assigned to the proc-
essor ($5.3). These considerations of course do not apply to a service routine
called by an interrupt instruction.

Interrupt Instructions. An instruction executed in response to an
interrupt request and not under control of PC is referred to elsewhere in
this manual as being “executed as an interrupt instruction.” Some instruc-
tions, when so executed, have different effects than they do when performed
in other circumstances. And the difference is not due merely to being per-
formed in an interrupt location or in response (by the program) to an inter-
rupt. To be an interrupt instruction, an instruction must be executed in the
first or second interrupt location for a level, in direct response by the hard-
ware (rather than by the program) to a request on that level. These loca-
tions may be the fixed ones for a standard interrupt or those given by the
function word for a dispatch interrupt. 62.18 describes the two ways a
BLKO is performed. If a BLKO is contained in an interrupt routine called
by a JSR, it is not “executed as an interrupt instruction” even in the un-
likely event the routine is stored within the interrupt locations and the
BLKO is executed by an XCT. The interrupt instructions executed in a
standard or dispatch interrupt fall into three categories.

AOSX, SKPX, SOSX, CONSX, BLKX. If the skip condition specified
by the instruction is satisfied, the processor dismisses the interrupt and
returns immediately to the interrupted program (i.e. it returns control
to the unchanged PC). If the skip condition is not satisfied, the processor
executes the instruction contained in the second interrupt location.

Satisfaction of the condition does not change PC, as this would skip
the next instruction in the interrupted program. In effect the instruc-
tion skips back to the interrupted program by skipping the second inter-
rupt location.

Note that the interpretation of a BLKI or BLKO as a skip instruc-
tion is consistent with the description given in 02.18, the condition
being that the count is not zero.

CAUTION

In the second interrupt location, a skip instruction whose
condition is not satisfied hangs up the processor, which will
keep repeating the instruction until the condition is satisfied.

KIlO and KAlO System Operations 57

JSR, JSP, PUSHJ, MUUO. The processor holds an interrupt on the
level, takes the next instruction from the location specified by the jump
(as indicated by the newly changed PC), and enters either kernel mode
or the mode specified by the new PC word of the MUUO. Hence the
instruction is usually a jump to a service routine handled by the Moni-
tor.

All Other Instructions. In general the processor simply executes the
instruction, dismisses the interrupt, and then returns to the interrupted
program. If the instruction is a jump (other than those mentioned
above), the processor jumps to the newly specified location; but it
dismisses the interrupt and returns to the mode it was already in when
the interrupt occurred. Hence it effectively returns to the interrupted
program but in a different place, and the orginal contents of PC are lost.

Since the interrupt operations are performed in kernel mode regardless
of the actual mode of the processor, an XCT is performed as a PXCT ($5.4).
The ultimate effect of the XCT depends of course on the instruction exe-
cuted - and its effect is as described here for the various categories.

CAUTION

Neither an LUUO, a BLT, a DMOVEM, nor a DMOVNM
will function in a reasonable manner as an interrupt instruc-
tion. Therefore do not use them.

Interrupt Programming

The program can control the priority interrupt system by means of condi-
tion IO instructions. The device code is 004, mnemonic PI.

CON0 PI, Conditions Out, Priority Interrupt

70060 I x] Y
0 12 13 14 17 18 35

Perform the functions specified by the effective conditions E as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

DROP PROGRAM INITIATE DEACTIVATE ACTIVATE

REOUESTS ON INTERRUPTS PI PI

SELECTED ON \ /
LEVELS

CLEAR CLEAR DISABLE ENABLE
POWER PARITY

\ CLEAR /

PARITY ERROR PI SELECT LEVELS FOR BITS 22,24,25,26
FAlLdAE ERROR
FLAG FLAG INTERRUPT SYSTEM SELECTED LEVELS

I I I 1 12 13 14 j 5 16 17

18 19 20 ' 21 22 23 24 25 26 27 28 29 1 30 31 32 1 33 34 35

Bits 18-21 are actually for processor conditions (45.3).

20 Prevent the setting of the Parity Error flag from requesting an inter-
rupt on the level assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt on
the level assigned to the processor.

-

5-8 KIlO and KAlO System Operations

22

23

24

25

26

27

28

On levels selected by 1s in bits 29-35, turn off any interrupt requests
made previously by the program (via bit 24).

Deactivate the priority interrupt system, turn off all levels, eliminate
all interrupt requests that have already been accepted but are still
waiting, and dismiss all interrupts that are currently being held.

Request interrupts on levels selected by 1s in bits 29-35, and force the
processor to accept them even on levels that are off. The request re-
mains indefinitely, so as soon as an interrupt is completed on a given
level another is started, until the request is turned off by a CON0
that selects the same level and has a 1 in bit 22.

Remember that the processor allows the program to continue
while it grants an interrupt. Thus when this bit forces acceptance of a
request, another program instruction or two may be performed before
the interrupt, even on the highest priority level. Moreover if the re-
quest is allowed to remain, additional instructions may be performed
between successive interrupts. For other than the highest priority
level, the greater the number of higher priority levels active, the
greater the amount of program time available both initially and be-
tween successive interrupts. If the program forces an interrupt on the
lowest priority level when all are active, there can be as much as 40
ps of program time between the CON0 PI, and its interrupt.

Turn on the levels selected by 1s in bits 29-35 so interrupt requests
can be accepted on them.

Turn off the levels selected by 1s in bits 29-35, so interrupt requests
cannot be accepted on them unless made by a CON0 PI, with a 1 in
bit 24.

Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

I
70064 I x Y

0 I2 13 14 17 18 35

Read the status of the priority interrupt (and nine console operating
switches) into location E as shown.

_
INST DATA

FETCH FETCH
WRITE

AOCHESS ADDHtSS EXFC USER PAR NXM PROGRAM REQUESTS ON LEVELS
STOP HREAK PAr,lNG PAGlliiG STOP SIOP

11 2 13 14 15 j 6 17

0 I 2 3 4 5 6 7 8 9 IO 11 ' 12 13 14 ' 15 16 17

INTERRUPT IN PROGRESS ON LEVELS

KIlO and KAlO System Operations 5-9

Levels that are active are indicated by 1s in bits 29-35; 1s in bits 21-27
indicate levels on which interrupts are currently being held; 1s in bits
11-17 indicate levels that are receiving interrupt requests generated by a
CON0 PI, with a 1 in bit 24. A 1 in bit 28 means the interrupt system is on.

The remaining conditions read by this instruction have nothing to do
with the interrupt. Bits O-8 reflect the settings of various console operating
switches; for information on these switches refer to Appendix F.l.

Dismissing an Interrupt. Unless the interrupt operation dismisses
the interrupt automatically, the processor holds an interrupt until the pro-
gram dismisses it, even if the interrupt routine is itself interrupted by a
higher priority level. Thus interrupts can be held on a number of levels
simultaneously, but from the time an interrupt is started until it is dis-
missed, no interrupt can be started on that level or any level of lower
priority (requests, however, can be accepted on lower priority levels.).

A routine dismisses the interrupt by-using a JEN (JRST 12,) to return
to the interrupted program (the interrupt system must be on when the JEN
is given). This instruction restores the level on which the interrupt is being
held, so it can again accept requests, and interrupts can be started on it and
lower priority levels. JEN also restores the flags, whose states were saved
in the left half of the PC word if the routine was called by a JSR, JSP,
PUSHJ, or MUUO. If flag restoration is not desired, a JRST 10, can be used
instead.

CAUTION

An interrupt routine must dismiss the interrupt when it re-
turns to the interrupted program, or its level and all levels of
lower priority will be disabled, and the processor will treat
the new program as a continuation of the interrupt routine.

Timing. The time a device must wait for an interrupt to start depends
on the number of levels in use, and how long the service routines are for
devices on higher priority levels. If only one device is using interrupts, it
need never wait longer than 10 ,us.

Special Considerations. On a return to an interrupted program, the
processor always starts the interrupted instruction over from the begin-
ning. This causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that
holds the pointer as an index register in the same BLT, he cannot have the
BLT load AC except by the final transfer, and he cannot expect AC to be
the same after the instruction as it was before.

5-10 KIlO and KAlO System Operations

An interrupt can also start in the second effective address calculation
in a two-part byte instruction. When this happens, First Part Done is set.
This flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for
user programs. Even if the User In-out flag is set, a user program generally
cannot reference the interrupt locations to set them up. Procedures for in-
forming the Monitor of the interrupt requirements of a user program are
discussed in the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.
l No requests can be accepted, not even on higher priority levels, while
an interrupt is starting. Therefore do not use lengthy effective address
calculations in interrupt instructions.
l Most in-out devices are designed to drop an interrupt request when the
program responds, usually with a DATA1 or DATAO. If an interrupt is
handled neither by a BLKI or BLKO interrupt instruction nor by a service
routine, the programmer must make sure the device is configured to drop
the request on receipt of whatever response the program does give.
l The interrupt instruction that calls the routine must save PC if there is
to be a return to the interrupted program. Generally a JSR is used as it
saves both PC and the flags, and it uses no accumulator.
l The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. For example, computations that can be per-
formed outside the routine should not be included within it.
l If the routine uses a UUO it must first save the contents of the pair of
locations that will be changed by it in case the interrupted program was in
the process of handling a UUO of the same type. For an MUUO the routine
must save locations 424 and 425 of the user process table. For an LUUO the
routine must save location 40 in the executive process table and the loca-
tion used by the UUO handler instruction to store the PC word.
l The routine must dismiss the interrupt (with a JEN) when returning to
the interrupted program. The flags and UUO locations should be restored.

5.3 KII 0 Processor Conditions

Page failures and overflow are handled by trapping, but there are a number
of internal conditions that can signal the program by requesting an inter-
rupt on a level assigned to the processor. The program can actually assign
two levels - one for error conditions and one specifically for the clock.
Control over the Power Failure and Parity Error flags is exercised by a
CON0 that addresses the priority interrupt system ($5.2). Control over
other conditions and inspection of all are handled by condition IO instruc-
tions that address the processor; the CON1 also reads some console switches

KIlO and KAlO System Operations 5-11

and maintenance functions. The processor also has a data-out instruction
through which the program can perform margin checking of the system in
both speed and voltage.

The error conditions are generally regarded as important enough to be
assigned to the highest priority level. However for conditions that may be
associated with user instructions (a parity error or unanswered memory
reference), the common practice is for the error interrupt to switch over to
the lowest priority level by means of a program-set request. Then the time
to handle the situation, which may well be considerable, cannot interfere
with high priority events.

One of the features controlled by the CON0 for the processor is the
automatic restart after power failure. This restart applies only when the
levels on the power mains go below specification while the processor is
running, and the power switch is on when power is restored - the machine
never begins operation by itself when the operator turns the power switch
on or off. Inadequate power, over temperature, etc. are indicated by the
Power Failure flag. In order for the processor to restart itself, the program
must respond in a particular way to the setting of Power Failure. If the
program fails to respond properly, there is no restart.

The processor device code is 000, mnemonic APR.

CON0 APR, Conditions Out, Arithmetic Processor

70020 I x Y
I

0 12 13 14 17 18 35

Assign the interrupt levels specified by bits 30-35 of the effective condi-
tions E and perform the functions specified by bits 18-29 as shown (a 1 in a
bit produces the indicated function, a 0 has no effect).

CLEAR
NONEXISTENT
MEMORY
/

DISABLE ENABLE DISABLE ENABLE /'
CLEAR CLEAR PRIORITY INTERRUPT PRIORITY INTERRUPT

RESET ALL DISABLE ENABLE CLOCK CLEAR IN-OUT
TIMER IN-OUT TIMER TIMER AU13 RESTART

INTERRbPT CLOCK PAGE ASSIGNMENT-ERROR ASSIGNMENT-CLOCK
DEtilCES

I
FAILURE

I I I I I
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

A 1 in bit 19 produces the IO reset signal, which clears the control logic in
all of the peripheral equipment (but affects neither the priority interrupt
system nor the processor conditions).

CONI APR, Conditions In, Arithmetic Processor

r
70024 I x Y

0 121314 17 18 35

Read the status of the processor (as well as various console switches and
maintenance functions) into location E as shown (asterisks indicate bits
that can cause interrupts).

-

-

-

&12 KIlO and KAlO System Operations

MAINTENANCF
MODE

/
POWER

VOLTAGE
SENSE SWITCHES

ALARM
MONITOR

LOW 1 2 , 3, 4 , 5, 6

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 ' 15 16 17

"ARITY CLOCK
ERROR ,NTERRUPT NONEXISTENT
Q‘ERRUPT ENABLED MEMORY
ENA2LFD

m;;;ki/

*

I*

* *

i
:'

TIMER PGb4tR
Al;10 IN-?ilT

RESTART
/ PRIORITY INTERRUPT PRIORITY INTERRUPT

EkABLEC FAILURE U,SABLEO
CLOCK PAGE

FAILUAF
ASSIGNMENT-ERROR ASSIGNMENT-CLOCK

I.
19 -~ 20

I I 1 I
18 21 22 23 24 25 26 27 20 29 30 31 32 33 34 35

Interrupts are requested on the error level (assigned by bits 30-32 of
the CONO) by the setting of Power Failure, In-out Page Failure, Nonexis-
tent Memory, and if enabled, Parity Error. The setting of Clock Flag, if
enabled, requests an interrupt on the clock level (assigned by bits 33-35 of
the CONO).

Bits 12-17 reflect the states of the console sense switches, which are
specifically for operator communication with the program. Bits 1-5 reflect
the settings of various console operating switches; for information on these
switches refer to Appendix F.l. Bits 7-10 are maintenance function& for
which the reader should refer to Chapter 10 of the maintenance manual.

6 The system is operating on 50 Hz line power. This is important to the
program, not only because some IO devices run slower on 50 Hz, but
because the program must compensate for the time difference when
using the line frequency clock (bit 26).

18 Bit 21 is 1 and the program has not reset the timer (CON0 APR, bit
18) during the last 1.2 seconds (the period of the timer may vary from
1.2 to 1.5 seconds). The setting of this flag clears the processor and the
peripheral equipment, and restarts the processor in kernel mode at
location 70.2

19 A word with even parity has been read from core memory. If bit 20 is
1, the setting of Parity Error requests an interrupt on the error level
(see cautions below).

22 AC power has failed. The program should save PC, the flags, mode
information and fast memory in core, and halt the processor. Note
that PC may point to an interrupt service routine rather than the
main program.

1 The processor does not actually have a maintenance mode - the bit is simply the OR
function of a number of console switches, any cne of which being on implies that the
processor is being operated for maintenance purposes.

2 The timer provides a restart similiar to that following power failure. Running the machine
under margins may result in significant logical errors. If the timer is enabled, failure of
the program to reset it about every second allows it to time out. The restart instruction
should set up PC, which would otherwise be clear.

KIlO and KAlO System Operations 5-13

26

28

29

The setting of this flag requests an interrupt on the error level.
After 4 ms the processor is cleared. But at that time, if the power
switch is on and the program has cleared Power Failure (CON0
PI,400000) and enabled the auto restart (CON0 APR,OlOOOO), then
when adequate power levels are restored, the processor will resume
normal operation by executing the instruction in location 70 in kernel
mode. The restart instruction should set up PC, which would other-
wise be clear.

This flag is set at the ac power line frequency and can thus be used for
low resolution timing (the clock has high long term accuracy). If bit
25 is 1, the setting of the Clock flag requests an interrupt on the clock
level.

A page failure has occurred in an interrupt instruction. The setting of
this flag requests an interrupt on the error level. An interrupt page
failure caused by the console address break switch also sets this flag
instead of producing an address failure ($5.4).

Note: A page failure in an interrupt instruction is regarded as a
fatal error, and it causes an interrupt instead of a page failure trap.
The kernel program is expected to set up the interrupt instructions so
that a failure simply cannot occur.

The processor attempted to access a memory that did not respond
within 100 I_IS. The setting of this flag requests an interrupt on the
error level (see cautions below).

Note: PC bears no relation to the unanswered reference if the
attempted access originated from a console key function.

Programming Cautions. When handling parity error or nonexistent
memory interrupts, the programmer should beware of the following.
l Should an error flag be set during an interrupt grant, the processor
would handle a lower priority interrupt before getting to the processor in-
terrupt. This means PC may be pointing to a lower level interrupt service
routine rather than the program level at which the error occurred. (Re-
member that during the grant procedure, the interrupt system is otherwise
static and the program continues. Moreover the processor is effectively at
the far end of the bus.)
l Even without inadvertent interference from another level, it is quite
likely the processor will perform one or perhaps two more instructions be-
tween the time the error flag sets and its interrupt starts. Hence even
though PC is at the correct program level, it may well be pointing to the
first or second instruction following the one in which the error occurred.
l A processor error interrupt that switches over to a lower priority level
should not return to the interrupted program, as the error may simply
recur, producing a second processor interrupt before the error-handling in-
terrupt for the first. This could happen because PC is actually pointing to
the offending instruction, but beyond that, one error often begets another

5-14 KIlO and KAlO System Operations

- consider the case of PC counting into a nonexistent memory. In any
event, it is generally not worthwhile to return to any program without first
finding out what went wrong.
l The error may have originated from a console key function, and thus be
hidden from any investigation by the program.

DATA0 APR, Maintenance Data Out, Arithmetic Processor

I 70014 I x Y I
0 12 13 14 17 18 35

Supply diagnostic information and perform diagnostic functions according
to the contents of location E as shown.

The margin value specified by bits 30-35 of the output word is trans-
lated to a voltage in the range O-10 volts by a D-A converter, whose output
is available at pin 2SO2V2. Running margins requires a slowdown capaci-
tor in the converter. But turning off the margin enable switch cuts out the
capacitor, making the converter output suitable for external use, such as
for operating audio equipment to play Bach or rock or Bacharach.

Notes. This instruction is primarily for maintenance, for which further
information is given in Chapter 10 of the KI10 Maintainance ManuaZ.

5.4 KllO Program and Memory Management

General information about the machine modes and paging procedures is
given in Chapter 1, in particular in $1.3. Here we are concerned principally
with the special instructions the Monitor uses to operate the system, the
special effects that ordinary instructions have in executive mode, and cer-
tain hardware procedures, in particular paging and page failures, that are
necessary for an understanding of executive programming.

KIlO and KAlO System Operations 5-15

Paging

All of memory both virtual and physical is divided into pages of 512 words3
each. The virtual memory space addressable by a program is 512 pages; the
locations in virtual memory are specified by H-bit addresses, where the left
nine bits specify the page number and the right nine the location within
the page. Physical memory can contain 8192 pages and requires 22-bit
addresses, where the left thirteen bits specify the page number. The hard-
ware maps the virtual address space into a part of the physical address
space by transforming the H-bit addresses into 22-bit addresses. In this
mapping the right nine bits of the virtual address are not altered; in other
words a given location in a virtual page is the same location in the corre-
sponding physical page. The transformation maps a virtual page into a
physical page by substituting a 13-bit physical page number for the g-bit
virtual page number. The mapping procedure is carried out automatically
by the hardware, but the page map that supplies the necessary substitu-
tions is set up by the kernel mode program. Each word in the map provides
information for mapping two consecutive pages with the substitution for
the even numbered page in the left half, the odd numbered page in the
right half.

The pager contains two 13-bit registers that the Monitor loads to spec-
ify the physical page numbers of the user and executive process tables. To
retrieve a map word from a process table, the hardware uses the appropri-
ate base page number as the left thirteen bits of the physical address and
some function of the virtual page number as the right nine bits. For exam-
ple the entire user space of 512 virtual pages at two mappings per word
requires a page map ofjust half a page, and this is the first half page in the
user process table. Thus locations O-377 in the table hold the mappings for
pages 0 and 1 to 776 and 777. To find the desired substitution from the g-bit
virtual page number, the hardware uses the left eight bits to address the
location and the right bit to select the half word (0 for left, 1 for right). If
the Monitor specifies a program as being a small user, that program is
limited to two 16K blocks with addresses O-37777 and 400000-437777.
This is pages O-37 and 400-437, and the mappings are in locations O-17
and 200-217 in the page map.

The executive virtual address space is also 256K but the first 112K are
not paged - in other words any address under 340000 given in kernel
mode addresses one of the first 112K 1~ cations in physical memory directly.
The other 144K is paged for supervisor or kernel mode anywhere into phy-
sical memory. For this there are two n aps. The map for the second half of
the virtual address space uses the sam ! locations in the executive process
table as are used in the user process table for the user map (locations
200-377 for pages 400-777). The map br the remaining 16K in the first

3 Actually page 0 has only 496 locations using ac dresses 20-777, as addresses O-17 refer-
ence fast memory, which is unrestricted and avs lable to all programs. (In general a user
cannot reference the first sixteen core locations in his virtual page 0.) Throughout this
discussion it is assumed that all references are to :ore and are not made by an instruction
executed by a PXCT (see below).

5-16 KIlO and KAlO System Operations

half of the executive virtual address space is in the user process table, the
mappings for pages 340-377 being in locations 400-417. Thus the Monitor
can assign a different set of thirty-two physical pages (the per-process area)
for its own use relative to each user. Then when switching from one user to
another, the Monitor need change only the user process table. This single
substitution can make whatever change is necessary in the executive ad-
dress space for a particular user.

Figures 5.1 and 5.2 show the organization of the virtual address spaces,
the process tables and the mappings for both user and executive. The first
illustration gives the correspondence between the various parts of each
address space and the corresponding parts of the page map for it. The sec-
ond illustration lists the detailed configuration of the process tables. Any
table locations not used by the hardware can be used by the Monitor for
software functions. Note that the numbers in the half locations in the page
map are the virtual pages for which the half words give the physical substi-
tutions. Hence location 217 in the user page map contains the physical page
numbers for virtual pages 436 and 437.

Although the virtual space is always 256K by virtue of the addressing
capability of the instruction format, the Monitor usually limits the actual
space for a given program by defining only certain pages as accessible.4 The
Monitor also specifies whether each page is public or not and writable or
not. Each word in the page map has this format to supply the necessary
information for two virtual pages.

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE

A P It’ s x PHYSICAL PAGE APWSX PHYSICAL PAGE
ADDRESS BITS 14-26 ADDRESS BITS 14-26

012345 17181920212223 35

Bits 5-17 and 23-35 contain the physical page numbers for the even and
odd numbered virtual pages corresponding to the map location that holds
the word. The properties represented by 1s in the remaining bits are as
follows.

Bit Meaning of a 1 in the Bit

A Access allowed

P Public

W Writable (not write-protected)

S Software (not interpreted by the hardware)

X Reserved for future use by DEC (do not use)

4 There is no requirement that the accessible space be continuous - it can be scattered
pages. The convention however is for the accessible space to be in two continuous virtual
areas, low and high, beginning respectively at locations 0 and 400000. The low part is
generally unique to a given user and can be used in any way he wishes. The (perhaps null)
high part is a reentrant area, which is shared by several users and is therefore write-
protected. The small user configuration is consistent with this arrangement.

KIlO and KAlO System Operations 5-17

Figure 5.1: Virtual Address Space and Page Map Layout

4000

40000

44000

77771

USER
VIRTUAL

A%!iCESS

16K

112K

16 K

IlZK

\
\
\

\;‘\
\;:\

\’
\’
‘?‘ \

/j
‘/

// /
/ / / /

/ / /
/

/I /
I

/

/

/

,

I

:
/

/

/

/

USER
PROCESS
TABLE

SMALL USER O-37

40-377 112

SMALL USER 400-437 l-6

440&l??

EXECUTIVE 340 37i

TRAP 8 MUUO

16

112

224

,’

1’

34oooc
/

,/'

4ooooc
_ ~~ ~~

77777;

112 K

NOT PAGED

IKERNL?MOOE ON

16K

128K

LY 1

-

EXECUTIVE

pKss

236

-

SHADED AREAS
Af?i RtSERVED

5-18 KIlO and KAlO System Operations

Figure 5.2: Process Table Configuration

USER PROCESS TABLE

01 USER PAGE 0
I
I

1 USER PAGE 1

I I

17 USER PAGE 36

t
20 USER PAGE 40

USER PAGE 37

USER PAGE 41

I I
I

IAVAILABLE TOSOFTWAREIFSMALL USER
I I
I I
I I I

I I I

177 USER PAGE 376 USER PAGE 377

200 USER PAGE 400 USER PAGE 401

217 1 USER PAGE 436 t USER PAGE 437 I

220 i USES PAGE 440 1 USER PAGE 441

I I

I I

I I
I I
1 A VAILABLE TO SOFTWARE IF SMALL USER
I I
I I

3/J UStH PAGE 776 USER PAGE 777

400 EXECUTIVE PAGE 340 EXECUTIVE PAGE 341

417 EXECUTIVE PAGE 376 EXECUTIVE PAGE 377

420 USER PAGE FAILURE TRAP INSTRUCTION

433 SUPERVISOR TRAP NEW MUUO PC WORD

434 CONCEALED NO TRAP NEW MUUO PC WORD

435 CONCEALED TRAP NEW MUUO PC WORD

436 PUBLIC NO TRAP NEW MUUO PC WORD

437 PUBLIC TRAP NEW MUUO PC WORD

440

1 RESERVED
I

777

EXECUTIVE PROCESS TABLE

,STANDARD PRIORITY INTERRUPT INSTRUCTIONS

; RESERVED

EXECUTIVE PAGE 401

I
I
I

377 EXECUTIVE PAGE 776 EXECUTIVE PAGE 777

400

I RESERVED

RESERVED

KIlO and KAlO System Operations 5-19

Associative Memory. If the complete mapping procedure described
above were actually carried out in every instance, the processor would re-
quire two memory references for every reference by the program. To avoid
this the pager contains a 32-word associative memory, in which it keeps the
more recently used mappings for both the executive and the current user.
Each word is divided into two parts with one part containing a virtual page
number specified by the program and the other containing the correspond-
ing physical page number as determined from the page map. Hence the
associative memory is a page table made up of a list of virtual pages and a
list of physical pages, each with thirty-two corresponding locations. In the
virtual list, each entry contains a g-bit virtual page number, a single bit
that indicates whether the specified page is in the user or executive address
space, and a bit that indicates whether the entry is valid or not (it is not
suitable to clear a location as 0 is a perfectly valid page number). Each
corresponding entry in the physical list contains a 13-bit physical page
number and the P, W and S bits from the map half word for that page. The
A bit is not needed in the table as the mapping is not entered into the table
at all if the page is not accessible. The program can inspect the contents of
the page table by using the MAP instruction and IO instructions that ad-
dress the paging hardware (see below).

At each reference the hardware compares the page number supplied by
the program with those in the virtual part of the page table. If there is a
match for the appropriate address space, the corresponding entry in the
physical list is used as the left thirteen bits in the physical address (pro-
vided of course that the reference is allowable according to the P and W
bits). If there is no match, the hardware makes a memory reference (re-
ferred to as a “page refill cycle”) to get the necessary information from the
page map and enters it into the page table at the location specified by a
reload counter. This counter is incremented whenever it is used to reload
the table, and also whenever the location to which it points is used for a
mapping. Hence the counter tends to stay away from locations containing
the page numbers most frequently referenced.

Page Failure

A page failure that occurs during an interrupt instruction terminates the
instruction and sets the In-out Page Failure flag, requesting an interrupt
on the error level assigned to the processor. In all other circumstances, if
the paging hardware cannot make the desired memory reference, it termi-
nates the instruction immediately without disturbing memory, the accumu-
lators or PC, places a page fail word in the user process table, and causes a
page failure trap. If the attempted reference is in user virtual address

.4

-.

5-20 KIlO and KAlO System Operations

space, the page fail word is placed in location 427 of the user process table,
and the processor executes the trap instruction in location 420 of the same
table.5 If the attempted reference is in executive virtual address space, the
page fail word is placed in location 426 of the user process table, and the
processor executes the trap instruction in location 420 of the executive pro-
cess table. The trap instruction is executed in the same address space in
which the failure occurred. The page fail word supplies this information.

I; VIRTUAL PAGE FAILURE ’
TYPE

89 17 .3 I 3s

IF BIT 31 IS 0, BITS 31 - 35
HAVE THIS FORMAT

Whether the violation occurred in user or executive virtual address space is
indicated by a 1 or a 0 in bit 8. If bit 31 is 1, the number in bits 31-35
(2 20) indicates the type of “hard” failure as follows.

23 Address failure - this is a simulated page failure caused by the satis-
faction of an address condition selected from the console. It indicates
that while the console address break switch was on and the Address
Failure Inhibit flag was clear (bit 8 of the PC word), the processor
initiated a page check for access to the memory location that was
specified by the paging and address switches and for which a compari-
son was enabled (whether or not a comparison can be made is a func-
tion of the setting of the paging switches (Appendix F.l) and the state
of the User Address Compare Enable flag (see below)), and the in-
tended memory reference was for the purpose selected by the address
condition switches as follows:

The instruction fetch switch was on and the requested access was
for retrieval of an ordinary instruction, including an instruction
executed by an XCT or an LUUO (address 41).

The data fetch switch was on and the requested access was for
retrieval of an address word in an effective address calculation or
read-only retrieval of an operand (other than in an XCT). This

5 When a page failure trap instruction is performed, PC points to the instruction that failed
(or to an XCT that executed it), unless the failure occurred in an overflow trap instruction
in which case PC points to the instruction that overflowed. After taking care of the failure,
the processor can always return to the interrupted instruction. Either the instruction did
not change anything, or the failure was in the second part of a two-part instruction, where
First Part Done being set prevents the processor from repeating any unwanted operations
in the first part.

Since a user page failure trap instruction is executed in user address space, the Moni-
tor should be careful not to have the trap instruction do indirect addressing that might
cause another page failure.

KIlO and KAlO System Operations &21

22

20

21

switch can also cause a failure inadvertently6 on the retrieval of a
trap instruction or a PC word in an MUUO.

The write switch was on and the requested access was for writ-
ing,‘* either write-only or read-modify-write, including writing by
an LUUO (address 40). This switch also causes a failure on the
first write in an MUUO if the address switches contain the effec-
tive address of the MUUO (even though that address is not used
for the access), and can cause a failure inadvertently6 on the sec-
ond write.

The Address Failure Inhibit flag, which can be set only by a
JRSTF or MUUO, prevents an address failure during the next in-
struction - the completion of the next instruction automatically
clears it. If an interrupt or trap intervenes, the flag has no effect and
it is saved and cleared if the PC word is saved. If it is not saved, it
affects the instruction following the interrupt or trap. Otherwise it
affects the instruction following a return in which it is restored with
the PC word. Using this flag, the Monitor can return to a user in-
struction that caused an address failure and “get by it.”

Page refill failure - this is a hardware malfunction. The paging
hardware did not find the virtual page listed in the page table, so it
loaded paging information from the page map into the table but still
could not find it.

Small user violation - a small user has attempted to reference a
location outside of the limited small user address space.

Proprietary violation - an instruction in a public page has attempted
to reference a concealed page or transfer control into a concealed page
at an invalid entry point (one not containing a JRST 1,).

If the violation is not one of these, then bits 31-35 have the format shown
above where A, W and S are simply the corresponding bits taken from the
map half word for the page, and T indicates the type of reference in which
the failure occurred - 0 for a read reference, 1 for a write or read-modify-
write reference. The type of reference implies nothing about the cause of
failure - it indicates only the reason the failed reference was being made.

The page fail trap instruction is set by the Monitor to transfer control
to kernel mode. After rectifying the situation, the Monitor returns to the

6

6A

Virtual addresses are supplied to the paging hardware via the address bus. An inadvertent
failure occurs when the bus is not used for an access, but it accidentally contains the
number set into the address switches. The data fetch switch also catches the attempt to
retrieve a dispatch interrupt instruction or inadvertently a standard interrupt instruction,
but the page failure sets the In-out Page Failure flag instead of resulting in a trap for an
address failure.

The write switch causes a failure on an instruction fetch if a read-modify-write precedes
it immediately (e.g. if there is no intervening interrupt, the program is not being single
stepped, etc).

-

5-22 KIlO and KAlO System Operations

interrupted instruction, which starts over again from the beginning.7 Even
a two-part instruction that has been stopped by a failure in the second part
is redone properly, provided the Monitor restores the First Part Done flag.

Note that a failure does not necessarily imply that anything is
“wrong.” The virtual address space of even a small user is 32K words,
which may well be more than is needed in a given run. Hence the Monitor
may have only ten or twenty pages of the user program in core at any given
time, and these would be the virtual pages indicated as accessible. When
the user attempts to gain access to a page that is not there (a virtual page
indicated in the page map as inaccessible), the Monitor would respond to
the page failure by bringing in the needed page from the drum or disk,
either adding to the user space or swapping out a page the user no longer
needs.

The same situation exists for writability. When bringing in a user
program, the Monitor would ordinarily indicate as writable only the buffer
area and other pages that will definitely be altered. Then in response to a
write failure, the Monitor makes the page writable and indicates to itself
(perhaps by means of the software bit in the page map) that that page has
in fact been altered. When the user is done, the Monitor need write only the
altered pages back onto the drum.

Monitor Programming

The kernel mode program is responsible for the overall control of the sys-
tem. It is the only program that has access to any of physical core unpaged
and that has no instruction restrictions. The kernel program handles all in-
out for the system and must set up the page maps, trap locations, interrupt
locations and the like. The supervisor program labors under the same in-
struction restrictions as the user but has no way of bypassing them - they
always apply. Supervisor mode is limited to the 144K paged part of the
executive address space, although within that space it can read but not
alter concealed pages. The supervisor can give a JRSTF that clears Public
provided it is also setting User; in other words the supervisor can return
control to a concealed program but cannot enter kernel mode by manipulat-
ing the flags. The PC words supplied by MUUOs can manipulate the flags
in any way, switching arbitrarily from one mode to another, but these are
in the process table and assumed to be under control solely of kernel mode.

For accumulator, index register and fast memory references, the Moni-
tor automatically uses fast memory block 0. For each user, the kernel mode
program must assign a block. The usual procedure is to assign blocks 2 and
3 to individual user programs on a semipermanent basis for special applica-
tions and to assign block 1 to all other users. In this way the Monitor need
not store blocks 2 and 3 when the special users are not running, and it need
not store block 1 when it takes over control from an ordinary user tempo-
rarily. If the Monitor shared block 0 with any users, it would have to store

7 In a soft page failure, the mapping entry for the page is removed from the page table on
the assumption that the Monitor will change it. When the instruction is restarted, the
hardware must go to the page map to get a new entry for the page table.

KIlO and KAlO System Operations &23

the user accumulators even when taking control only temporarily. When
switching from one user to another, the Monitor usually stores the first
user’s accumulators in his shadow area - this is locations O-17 in user
virtual page 0, an area not generally accessible to the user at all - and
loads the new user’s accumulators from his shadow area, where they were
stored after the last time the new user ran.

Even while User is set, the interrupt instructions are not part of the
user program and are thus subject only to executive restrictions. (The page
failure and overflow trap instructions are executed in the user address
space if caused by the user.) As interrupt instructions, JSR, JSP and
PUSHJ automatically take the processor out of user mode to jump to an
executive service routine. An MUUO can also be used.

The pager has one non-10 instruction and two IO instructions prima-
rily for diagnostic purposes. Otherwise control over the system is exercised
by data IO instructions. The device code for the pager is 010, mnemonic
PAG.

DATA0 PAG, Data Out, Paging

70114 l/l x 1 Y

0 121314 17 18 35

Invalidate all data in the associative memory, and set up the paging hard-
ware according to the contents of location E as shown. Invalidating all data
in the associative memory means setting the Word Empty bit in each loca-
tion to indicate that the rest of the word is meaningless and should not be
used.

USER
SMALL AmEss
USER COMPARE

USER BASE ADDRESS

ENABLE I I I I I I I I I I I I

3 4 5 ' 6 7 8 '9 10 11 ' 12 13 14 ' 15 16 17

.J

LOAD PAGE
RIGHi ENABLE

EXECUTIVE BASE ADDRESS

I I I I I I I I I I I I I

18 19 20 21 22 23 ' 24 25 26 ' 27 28 29 1 30 31 32 1 33 34 35

Bits 0 and 18 are change bits. If bit 0 is 0, ignore the rest of the left half
word. But if bit 0 is 1, load bits 5-17 into the user base register to select the
user process table, select the fast memory block specified by bits 1 and 2 for
the user, limit the address space to that of a small user if bit 3 is 1, and
enable address comparison if bit 4 is 1. The Address Compare Enable bit
functions in conjunction with the console paging switches, as explained in
Appendix F. 1.

Similarly if bit 18 is 0, ignore the rest of the right half word. Otherwise
load bits 23-35 into the executive base register to select the executive

5-24 KIlO and KAlO System Operations

process table, and enable executive paging if bit 22 is 1. For normal opera-
tion of the system, bit 22 must be 1. A 0 in this bit disables overflow traps,
and disables executive paging so there is no supervisor mode and no execu-
tive virtual addressing - in other words an executive program automati-
cally runs in kernel mode with all access in the first 256K of physical
memory unpaged.8

NOTE

Neither turning on power nor pressing the reset switch inval-
idates the data in the associative memory. Therefore, after
power has been off, the starting kernel program must do a
DATA0 PAG, to clear the associative memory of random
data before entering executive or user paged address space.

DATAI PAG, Data In, Paging

70104 I x Y

0 12 1314 17 18 35

Read the status of the paging hardware into location E. The information
read is the same as that supplied by a DATA0 (bits 0 and 18 are 0).

CON0 PAG, Conditions Out, Paging

1 70130 I/[x 1 Y I
0 I2 1314 17 18 3s

Load the executive stack pointer from bits 18-22 and the page table reload
counter from bits 31-35 of the effective conditions E as shown.

EXECUTIVE AC PAGE TABLE
STACK POINTER RELOAD COUNTER

I I I I I I I I I I I I I I I

18 19 20 1 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 1 33 34 35

The executive stack pointer specifies a block of sixteen locations in the
user process table by supplying the left five bits for a g-bit address that
references a location in the table; this function is used only for accessing
stacked fast memory blocks in an instruction executed by a PXCT (see
below). Loading the reload counter causes it to point to the specified loca-
tion in the page table.

s An executive mode program that does not set bit 22 and avoids other special KIlO features
will run on a KAlO as well. This is useful for hardware diagnostics and bootstrap loaders
(see readin mode, E)5.1).

KIlO and KAlO System Operations 5-25

CONI PAG, Conditions In, Paging

70124 I x
0 121314 17 18

Y I
35

Read the processor serial number, the page table reload counter, and the
contents of the location in the virtual page table specified by the counter
into location E as shown.

PROCESSOR SERIAL NUMBER

I I I I I I I I 1 I I I I I I I
0 I 2 13 4 5 16 7 8 19 10 11 1 12 13 14 ' 15 16 17

EXECUTIVE
COMPLEMENT OF VIRTUAL PAGE NUMBER ADDRESS

WORD PAGE TABLE

SPACE
FMPTY RELOAD COUNTER

I I I I I I I 1 I I I I I
18 19 20 I 21 22 23 1 24 25 26 27 28 29 30 31 32 / 33 34 35

Note that bits 18-26 contain the complement of the virtual page num-
ber in the selected location. A 1 in bit 27 indicates the page is in the
executive address space; a 1 in bit 30 means the information in bits 18-27
is invalid. It is possible for the reload counter to change between the CON1
and the CONO, so the CON1 might read a different location than was
selected by the CONO.

MAP Map on Address

357 A I x Y 1 -
0 89 121314 1718 35

Map the virtual effective address E and place the resulting map data in AC
right in the same format as it is in the page map, i.e. bits P, W and S in bits
19-21 and the physical page number in bits 23-35. Clear AC left.

PAGE P w S NO PHYSICAL PAGE
FAILURE MATCH ADDRESS BITS 14-26

I I I I I I I I I I I I

18 19 20 21 22 23 ' 24 25 26 1 27 28 29 1 30 31 32 1 33 34 35

This instruction cannot produce a page failure, but if a page failure
would have resulted had an ordinary instruction in the same mode at-
tempted to write in location E, place a 1 in AC bit 18. If no match can be
made by the paging hardware, place a 1 in bit 22. This results in four
possible situations as a function of the states of bits 18 and 22.

5-26 KIlO and KAlO System Operations

Bit 18 Bit 22 Meaning

0

0

0 AC right contains valid map data.

1 There is no page failure but also no match, so the instruction must
have made an unmapped reference - perhaps to fast memory or to
the unpaged area in kernel mode.

1

1

0 There is a page failure but the map data is correct as a match exists.

1 There is a page failure, and since there is no match, the failure must
have resulted from the instruction referencing an inaccessible page
or from some prior failure (such as a page refill malfunction). Hence
AC right contains invalid information.

The last three instructions above can be used to inspect the contents of
the associative memory. The CON0 selects a location, the CON1 reads the
contents of the virtual-page part of that location, and an MAP that ad-
dresses the specified virtual page reads the contents of the physical-page
part of that location.

Previous Context Execute

Ordinarily an instruction in a user program is performed entirely in user
address space, and an instruction in the executive program is performed
entirely in executive address space. But to facilitate communication be-
tween Monitor and users, the executive can execute instructions in which
selected references cross over the boundary between user and executive
address spaces. This feature is implemented by the previous context exe-
cute, or PXCT, instruction. The mnemonic PXCT is for convenience only
and, has no meaning to the assembler; it is used simply to indicate an XCT
with nonzero A bits. A PXCT is an XCT. Although the PXCT is given by a
program in the current context, some of the references made by the exe-
cuted instruction can be in the previous context. At any point in time, the
previous context is essentially the circumstances in which the previous
process was running. A PXCT can be given only in executive mode, but the
previous context may be the user, as following a call to the Monitor by the
user. The previous context can however be the executive, to allow commu-
nication between one level of the executive program and another, as when
the Monitor gives an MUUO to itself. But note that it is not intended that
PXCT be used by the Monitor for unsolicited references to a user program.

It is very important to understand just which operations are affected by
a PXCT and which are not. The only difference between an instruction
executed by a PXCT and an instruction performed in normal circumstances
is in the way certain of its memory operand references are made. To work
as a PXCT, an XCT must be given in executive mode, and bits 11 and 12 in
its A field (9-12) must not both be 0 (in user mode A is ignored). But there
is otherwise no difference in the way the XCT itself is performed: every-
thing in the PXCT is done in the current (executive) context, and the in-
struction to be executed by the XCT is fetched in the current context. More-
over in the executed instruction all effective address calculation and accu-

KIlO and KAlO System Operations 5-27

mulator references (specified by bits 9-12 of the instruction word) are in
the current context. (Remember that the executive can always access a user
accumulator simply by addressing it as a fast memory location.) If the
instruction makes no memory operand references, as in a jump, shift or
immediate mode instruction, its execution differs in no way from the nor-
mal case. The only difference is in memory operand references.

The previous context is specified by two flags. Just as the current mode
is indicated by the User and Public flags, the mode in which the calling
program was running is indicated by Previous Context User and Previous
Context Public.g At a call these flags are set up by an MUUO PC word.
Note that the restrictions on references made in the previous context are
those of the previous context - not those in which the PXCT is given.
Suppose the executive executes an instruction that references the concealed
user area. Such a reference would fail if Previous Context Public were set;
in other words the concealed area can be accessed by a PXCT only when
such access is requested by the concealed program.

Which references in the executed instruction are made in the previous
context is determined by 1s in bit 11 and 12 of the PXCT instruction word
as follows: a 1 in bit 12 selects read and read-modify-write memory operand
references; a 1 in bit 11 selects memory operand write references; and 1s in
both bits selects all memory operand references. The meaning of previous
context address space is obvious for core memory references, namely user or
executive virtual address space. But this is not so for fast memory. When
Previous Context User is set, the user space for fast memory references
depends on which fast memory block is currently selected for the user. If
block 0 is selected, fast memory operand references of the types specified
are made to the user shadow area. If some other block is selected, the
specified fast memory references are made to the selected block.

If Previous Context User is clear, fast memory references of the types
specified are made to the user process table, in particular to that set of
sixteen locations specified by the executive stack pointer. The pointer is
given by a CON0 PAG,.

Previous Context Fast Memory References

Previous Fast Memory Block Selected
Context User Zero Nonzero

1 User shadow area Selected user block

0 AC stack AC stack

Individual Instruction Effects. The effects of execution by a PXCT
on different types of instructions are as follows.

g Previous Context User and Previous Context Public are in the same flag bits that are used
for User In-out and Overflow in user mode. The former has no meaning in executive mode,
and the latter is not really necessary as the executive program is not ordinarily interested
in performing extensive mathematical procedures.

k-28 KIlO and KAlO System Operations

l Instructions without memory operand references are not affected. This
includes shifts, jumps, immmediate mode instructions, CONSO, CONO,
and even an XCT. In fact not only is a PXCT not affected when executed by
a PXCT, but the first destroys any effect the second would otherwise have
on a third instruction (in other words, a pair of PXCTs is equivalent to a
pair of ordinary XCTs).
l Instructions that refer to one memory location for reading only or read-
ing and writing are controlled by the read bit (MOVE, MOVES, ADDM,
AOS). The read bit controls writing when the write is done to the same
location as the read, whether the memory references are done as a single
cycle including both read and write or as separate read and write cycles.
l Instructions that refer to one memory location for writing only are
controlled by the write bit (MOVEM, MAP, HRLZM).
l Instructions that refer to two different memory locations are controlled
by the read bit in the read part of the instruction and by the write bit in the
write part (BLT, PUSH).
l BLKI and BLKO are controlled by the write bit and the read bit respec-
tively. The pointer reference is done in the same address space as the data
transfer.
l In byte instructions all pointer calculations are done in executive ad-
dress space. The read and write bits affect only the second part, i.e. the load
or deposit.

Philosophy. The purpose of the PXCT is to facilitate the handling of
user requirements by the Monitor, but the selection made by Previous Con-
text User of the references affected by the read and write bits is to allow the
Monitor to make recursive calls to itself, i.e. to perform MUUOs in the
process of carrying out an MUUO given by the user. Specifically the state
of Previous Context User differentiates between the Monitor response di-
rectly to the user MUUO and its response to its own MUUOs.

The new PC word of an MUUO from the user would set Previous Con-
text User so that core memory references can be made across the user-
executive boundary, and fast memory references can be made to the user
AC block. The point in choosing between the shadow area and the selected
block if not block 0 is to reference the information that was held in the user
AC block before the Monitor took over. If the user shared block 0 with other
users and the Monitor, the Monitor will have saved his ACs in the shadow
area of his address space. The other AC blocks are not disturbed when the
Monitor takes over temporarily, so the Monitor need not save them and
they will still hold the user information.

If in the course of carrying out a user MUUO, the Monitor should itself
give an MUUO, the new PC word would clear Previous Context User. Thus
at this level all core memory references are in the executive address space
and fast memory references are to an AC block in the user process table as
specified by the executive stack pointer. MUUO calls by the Monitor to
itself can be nested to a number of levels, but in all cases Previous Context
User is left clear. The particular AC block used at any level is specified by
the stack pointer, which makes a different set of sixteen words available at

KIlO and KAlO System Operations 5-29

each level using the same adddresses. Hence the AC stack in the user
process table is effectively a pushdown stack kept by the stack pointer; at
each level the program must change the pointer to specify the appropriate
block. Each user process table would contain the blocks needed for carrying
out MUUOs for that user.

Example. Suppose that the Monitor has been called by an MUUO from
the user (hence Previous Context User is set) and wishes to save the user’s
ACs in the shadow area. Assume that every user runs with AC block 1,2 or
3, and that the Monitor always sets up executive virtual page 342 to point
to the same physical page as user page 0. Using accumulator T in block 0,
the Monitor saves the user ACs by giving these two instructions,

MOVE1 T,342000 ;Initialize pointer: from 0 to 342000
XCT l,[BLT T,3420171

and restores them with these two.

MOVSI T,342000 ;From 342000 to 0
XCT BJBLT T,171

5.5 KAlO Priority Interrupt

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service
them, but they must be serviced within a short time after they request it.
Failure to service within the specified time (which varies among devices)
can often result in loss of information and certainly results in operating the
device below its maximum speed. The priority interrupt is designed with
these considerations in mind, i.e. the use of interruptions in the current
program sequence facilitates concurrent operation of the main program and
a number of peripheral devices. The hardware also allows conditions inter-
nal to the processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven levels arranged in a pri-
ority chain, with assignment of devices to levels entirely at the discretion of
the programmer. To assign a device to a level, the program sends the num-
ber of the level to the device control register as part of the conditions given
by a CON0 (usually bits 33-35). Levels are numbered 1-7, with 1 having
the highest priority; a zero assignment disconnects the device from the
interrupt levels altogether. Any number of devices can be connected to a
single level, and some can be connected to two levels (e.g. a device may
signal that data is ready on one level, that an error has occurred on an-
other).

When a device requires service it sends an interrupt request signal
over the in-out bus to its assigned level in the processor. The processor
accepts the request depending upon certain conditions, such as that the
level must be active (on). The request signal remains on the bus until
turned off by the program (CONO, DATAO, or DATAI, depending on the
device). Thus if a request is not accepted when made, it will be accepted
when the conditions are satisfied. A single level will shut out all others of

5-30 KIlO and KAlO System Operations

lower priority if every time its service routine dismisses the interrupt, a
device assigned to it is already waiting with another request. The program
can usually trigger a request from a device but delay its acceptance by
turning on the level later.

The request signal is generally derived from a flag that is set by vari-
ous conditions in the device. Often associated with these flags are enabling
flags, where the setting of some device condition flag can request an inter-
rupt on the assigned level only if the associated enabling flag is also set.
The enabling flags are in turn controlled by the conditions supplied to the
device by a CONO. For example, a device may have half a dozen flags to
indicate various internal conditions that may require service by an inter-
rupt; by setting up the associated enabling flags, the program can deter-
mine which conditions shall actually request interrupts in any given cir-
cumstances.

Having accepted a request, the processor will do nothing further with it
unless the priority interrupt system is on. But even with the system off, the
processor will continue to accept requests on other levels; and when the
system is finally turned on, it will respond as though all requests had just
been accepted, handling the highest priority one first.

Starting an Interrupt. A request made to an active level is accepted
at the next memory access unless the processor is starting an interrupt for
any level or holding an ‘interrupt for the same level. Once a request is
accepted with the system on, the level must wait for the interrupt to start.
The processor however cannot start an interrupt if it is already holding an
interrupt for a level with priority higher than those on which requests have
been accepted (in other words if the current program is a higher priority
interrupt routine). When there is a higher priority level waiting, the proc-
essor stops the current

4
rogram at the first allowable point to start an

interrupt for the waiting 1,evel that has highest priority. Allowable stopping
points are following the retrieval of an instruction, following the retrieval
of an address word in an effective address calculation (including the second
calculation using the pointer in a byte instruction), and between transfers
in a BLT. When an interrupt starts, PC points to the interrupted instruc-
tion, so that a correct return can later be made to the interrupted program.

Two memory locations are associated with each level: unrelocated loca-
tions 40 + 2N and 41 + 2N, where N is the level number. Level 1 uses
locations 42 and 43, level 2 uses 44 and 45, and so on to level 7 which uses
56 and 57. The processor starts an interrupt for level N by executing the
instruction in location 40 + 2N. Interrupt locations for a second processor
on the same memory are 140 + 2N and 141 + 2N. Even though the proces-
sor may be in user mode when an interrupt occurs, interrupt instructions
are performed in executive mode.

Interrupt Instructions. An instruction executed in response to an
interrupt request and not under control of PC is referred to elsewhere in
this manual as being “executed as an interrupt instruction.” Some instruc-
tions, when so executed, have different effects than they do when performed
in other circumstances. And the difference is not due merely to being per-
formed in an interrupt location or in response (by the program) to an inter-
rupt. To be an interrupt instruction, an instruction must be executed in

KIlO and KAlO System Operations 5-31

location 40 + 2N or 41 + 2N, in direct response by the hardware (rather
than by the program) to a request on level N. 02.18 describes the two ways
a BLKO is performed. If a BLKO is contained in an interrupt routine called
by a JSR, it is not “executed as an interrupt instruction” even in the un-
likely event the routine is stored within the interrupt locations and the
BLKO is executed by an XCT. There are two categories of interrupt in-
structions.

Non-IO Instructions. After executing a non-10 interrupt instruction,
the processor holds an interrupt on the level and returns control to PC.
Hence the instruction is usually a jump to a service routine. If the
processor is in user mode and the interrupt instruction is a JSR, JSP,
PUSHJ, JSA or JRST, the processor leaves user mode (the Monitor
thus handles all interrupt routines).

If the interrupt instruction is not a jump, the processor continues
the interrupted program while holding an interrupt - in other words
it now treats the interrupted program as an interrupt routine. For
example, the instruction might just move a word to a particular loca-
tion. Such procedures are usually reserved for maintenance routines or
very sophisticated programs.

Block or Data IO Instructions. One or the other of two actions can
result from executing one of these as an interrupt instruction.

If the instruction in 40 + 2N is a BLKI or BLKO and the block is
not finished (i.e. the count does not cause the left half of the pointer
to reach zero), the processor dismisses the interrupt and returns to
the interrupted program. The same action results if the instruction
is a DATA1 or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does
reach zero, the processor executes the instruction in location 41 +
2N. This cannot be an IO instruction and the actions that result
from its execution as an interrupt instruction are those given
above for non-10 instructions.

CAUTION

The execution, as an interrupt instruction, of a CONO,
CONI, CONS0 or CONSZ in location 40 + 2N or any IO
instruction in location 41 + 2N hangs up the processor.

Interrupt Programming. The program can control the interrupt sys-
tem by means of condition IO instructions. The device code is 004, mne-
monic PI.

5-32 KIlO and KAlO System Operations

CON0 PI, Conditions Out, Priority Interrupt

[70060 I x Y
I

I2 13 14 17 18 35

Perform the functions specified by the effective conditions E as shown (a 1
in a bit produces the indicated function, a 0 has no effect).

INITIATE Ut~:IlVa~: ACT'VATt
INTERQ~IPTS PI PI

9"

\

CLEAR CLEAR GISABLE ENABLE i
TURN TURN ',

POWER PARITY
CLEAR ON OFF

FAILUQE ERROR PARITY ERROR PI SELECT LEVELS FOR BITS 24, P5,26

FLAG FLAG INTERRUPT SYSTEM SELECTED LEVELS I I I 11 2 13 14 15 j 6 j 7

18 19 20 ' 21 22 23 24 25 26 27 28 29 1 30 31 32 I 33 34 35

Bits 18-21 are actually for processor conditions ($5.6).

20 Prevent the setting of the Parity Error flag from requesting an inter-
rupt on the level assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt on
the level assigned to the processor.

23 Deactivate the priority interrupt system, turn off all levels, eliminate
all interrupt requests that have already been accepted but are still
waiting, and dismiss all interrupts that are currently being held.

24 Request interrupts on levels selected by 1s in bits 29-35, and force the
processor to accept them even on levels that are off. There is at most
one interrupt on a given level, and a request is lost if it is made by
this means to a level on which an interrupt is already being held.

25 Turn on the levels selected by 1s in bits 29-35 so interrupt requests
can be accepted on them.

26 Turn off the levels selected by 1s in bits 29-35, so interrupt requests
cannot be accepted on them unless made by a CON0 PI, with a 1 in
bit 24.

27 Deactivate the priority interrupt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt

70064 I x Y 1
12 I3 I4 I7 I8 3s

Read the status of the priority interrupt (and several bits of processor con-
ditions) into location E as shown.

KIlO and KAlO System Operations 5-33

PARITY ERROR
INTERRUPT
ENABLED
I

POWER PARITY I INTERRUPT IN PROGRESS ON LEVELS
PI

FAILURE ERROR
SYSTEM LEVELS ON (ACTIVE)

1121314151617 ON 1 j 2 13 14 15 16 17

18 19 20 21 22 23 ' 24 25 26 1 27 28 29 1 30 31 32 I 33 34 35

Levels that are on are indicated by 1s in bits 29-35; 1s in bits 21-27
indicate levels on which interrupts are currently being held. A 1 in bit 28
means the interrupt system is on.

The remaining conditions read by this instruction have nothing to do
with the interrupt. Bits 18-20 actually read processor status conditions
(65.6) as follows.

18 AC power has failed. The program should save PC, the flags and fast
memory in core, and halt the processor. Note that PC may point to an
interrupt service routine rather than the main program.

The setting of this flag requests an interrupt on the level as-
signed to the processor. If the flag remains set for 5 ms, the processor
is cleared.

19 A word with even parity has been read from core memory. If bit 20 is
set, the setting of the Parity Error flag requests an interrupt on the
level assigned to the processor, at which time PC points to the in-
struction being performed or to the one following it.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs
only in a DATA1 or DATAO, or in a BLKI or BLKO with an incomplete
block. Following any non-10 interrupt instruction, the processor holds an
interrupt until the program dismisses it, even if the interrupt routine is
itself interrupted by a higher priority level. Thus interrupts can be held on
a number of levels simultaneously, but from the time an interrupt is
started until it is dismissed, no interrupt can be started on that level or any
level of lower priority (requests, however, can be accepted on lower priority
levels).

A routine dismisses the interrupt by using a JEN (JRST 12,) to return
to the interrupted program (the interrupt system must be on when the JEN
is given). This instruction restores the level on which the interrupt is being
held, so it can again accept requests, and interrupts can be started on it and
lower priority levels. JEN also restores the flags, whose states were saved
in the left half of the PC word if the routine was called by a JSR, JSP, or
PUSHJ. If flag restoration is not desired, a JRST 10, can be used instead.

CAUTION

An interrupt routine must dismiss the interrupt when it re-
turns to the interrupted program, or its level and all levels of
lower priority will be disabled, and the processor will treat
the new program as a continuation of the interrupt routine.

5-34 KIlO and KAlO System Operations

Timing. The time a device must wait for an interrupt to start depends
on the number of levels in use, and how long the service routines are for
devices on higher priority levels. If only one device is using interrupts, it
need never wait longer than the time required for the processor to finish
the instruction that is being performed when the request is made. The
maximum time can be considered to be about 15 l.~s for FDVL, but a ridicu-
lously long shift could take over 35 ps.

Special Considerations and Programming Suggestions. If the in-
terrupt routine uses a UUO it must first save the contents of the pair of
locations that will be changed by it in case the interrupted program was in
the process of handling a UUO. Hence the routine must save unrelocated
location 40 and the location used by the UUO handler instruction to store
the PC word. In all other respects, the special considerations and program-
ming suggestions given at the end of the section on the KIlO interrupt hold
for the KAlO ($5.2).

5.6 KAlO Processor Conditions

There are a number of internal conditions that can signal the program by
requesting an interrupt on a level assigned to the processor. Most of these
conditions are generally regarded as important enough to be assigned to
the highest priority level. Except in the case of a power failure however, the
common practice is for the processor interrupt to switch over to the lowest
priority level by means of a program-set request. Then the time taken to
handle the situation, which may well be considerable, cannot interfere with
high priority events.

Flags for power failure and parity error are handled by the condition
IO instructions that address the priority interrupt system (05.5). The re-
maining flags are handled by condition instructions that address the proc-
essor. Its device code is 000, mnemonic APR.

CON0 APR, Conditions Out, Arithmetic Processor

[70070 I x Y
0 12 13 14 17 18

Assign the interrupt level specified by bits 33-35 of the
E and perform the functions specified by bits 18-32 as
produces the indicated function, a 0 has no effect).

CLEAR
PUSHDOWN
OVERFLOW

CLEAR CLEAR
MEMORY NONEXISTENT
PROTECTION MEMORY FLAG
FLAG\ /

CLEAR CLEAR
FLOATING OVERFLOW
OVERFLOW I

CLEAR CLEAR PRIORITY
ALL ADDRESS

\ 1 DISABCL;E&ARLE ;;;;; DlSAFdE;;ELE 1 DIS;;~/FEN;LE 1
INTERRUPT

IN-OUT BREAK FLAG
OVERFLOW

DEVICES FLAG INTERRUPT INTERRUPT INTERRUPT ASSIGNMENT
I L I I I

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

35

effective conditions
shown (a 1 in a bit

KIlO and KAlO System Operations 5-35

Enabling a particular flag to interrupt means that henceforth the set-
ting of the flag will request an interrupt on the level assigned (by bits
33-35) to the processor. Disabling prevents the flag from triggering a re-
quest.

A 1 in bit 19 produces the IO reset signal, which clears the control logic
in all of the peripheral equipment (but affects neither the priority interrupt
system, nor the processor flags cleared by this instruction or CON0 PI,).

CONI APR, Conditions In, Arithmetic Processor

70034 I x Y

0 12 13 14 17 IS
I

35

Read the status of the processor into the right half of location E as shown
(all interrupt requests are made on the level assigned to the processor).

PliSHDOWN MEMORY NCNEXISTENT CLOCK FLOATING FLOATING
OVERFLOW PROTECTION MEMORY

OVERFLOW OVERFLOW
INTERRUPT OVERFLOW OVERFLOW INTERRUPT

*

,\

FLAG
* * *

IJSER
IN~OUT

ADDRESS \
BREAK

\ !.;
]A;I;K ~~TA7fy$y?~

18 19 20 21 22 23 24 25 26 27 28

_ _ _

'
I

1

_ 11
29 30 31 32 33 34 35

Bits that can cause interrupts on the level assigned to the processor are
those indicated by asterisks, and also Power Failure and Parity Error, bits
18 and 19 read by a CON1 PI,.

With the possible exception of an illegal memory reference on an in-
struction fetch, if the highest priority active level is assigned to the proces-
sor, then the occurrence of any processor interrupt condition is guaranteed
to produce a processor interrupt with no lower priority interrupt interven-
ing between it and the program level at which the processor condition
occurred. The actual relationship between PC and the instruction associ-
ated with a given condition is as stated in its description.

19 Pushdown Overflow - in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached -1. The setting of
this flag requests an interrupt, at which time PC points to the in-
struction following that in which the overflow occurred. The location
of the offending instruction is implied by PC for PUSH or POP, is
indicated by the last item in the stack for PUSHJ, but is indetermi-
nate for POPJ.

20 User In-out - even if the processor is in user mode, there are no
instruction restrictions (but memory restrictions still apply) (95.7).

21 Address Break - while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose se-
lected by the address condition switches as follows:

-

5-36 KIlO and KAlO System Operations

22

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con-
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory, other than in a read-modify-write.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.
However PC bears no relation to the break if the access was requested
for a console key function.

Memory Protection - a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area, and the user instruction was terminated at that time. The set-
ting of this flag requests an interrupt, at which time PC points either
to the instruction that caused the violation or to the one following it,
unless the illegal reference was for fetching an instruction. In this
exceptional case it is possible for a lower level interrupt to occur
between the violation and its interrupt, even with the processor as-
signed to the highest priority active level.

This flag can also be set by an instruction executed from the
console while the USER MODE light is on, in which case PC bears no
relation to the violation.

23 Nonexistent Memory - the processor attempted to access a memory
that did not respond within 100 pus. The setting flag requests an inter-
rupt, at which time PC points either to the instruction containing the
unanswered reference or to the one following it. However PC bears no
relation to the unanswered reference if the attempted access origi-
nated from a console key function.

26 Clock - this flag is set at the ac power line frequency and can thus be
used for low resolution timing (the clock has high long term accu-
racy). If bit 25 is set, the setting of the Clock flag requests an inter-
rupt.

29 Floating Overflow - this is one of the flags saved in a PC word, and
the conditions that set it are given in 82.9. If bit 28 is set, the setting
of Floating Overflow requests an interrupt, at which time PC points
to the instruction following that in which the overflow occurred.

30 Trap Offset - the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

32 Overflow - this is one of the flags saved in a PC word, and the
conditions that set it are given in 82.9. If bit 31 is set, the setting of
Overflow requests an interrupt, at which time PC points to the in-
struction following that in which the overflow occurred.

KIlO and KAlO System Operations 5-37

CAUTION

For an address break, a memory protection violation, a parity
error, or a nonexistent memory, a processor error interrupt
that switches over to a lower priority level should not return
to the interrupted program, as the processor will fetch the
next user instruction before it accepts the program-set inter-
rupt request. This makes it very likely that the same error
will recur, producing a loop between the processor interrupt
and the interrupted program.

5.7 KAlO Program and Memory Management

Every user is assigned a core area and the rest of core is protected from him
- he cannot gain access to the protected area for either storage or retrieval
of information. The assigned area is divided into two parts. The low part is
unique to a given user and can be used for any purpose. The high part may
be for a single user, or it may be shared by several users. The Monitor can
write-protect the high part so that the user cannot alter its contents, i.e. he
cannot write anything in it. The Monitor would do this when the high part
is to be a pure procedure to be used reentrantly by several users. One high
pure segment may be used with any number of low impure segments. The
user can request that the Monitor write-protect the high part of a single
program, e.g. in order to debug a reentrant program. All users write pro-
grams beginning at address 0 for the low part, and beginning usually at
400000 for the high part. The programmed addresses are retained in the
object program but are relocated by the hardware to the physical area
assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protec-
tion and relocation addresses for the low and high blocks. The protection
address determines the maximum address the user can give; any address
larger than the maximum is illegal. The relocation address is the address,
as seen by the Monitor and the hardware, of the first location in the block.
The Monitor defines these addresses by loading four &bit registers, each of
which corresponds to the left eight bits (18-25) of an address whose right
ten bits are all 0.

To determine whether an address is legal its left eight bits are com-
pared with the appropriate protection register, so the maximum user ad-
dress consists of the register contents in its left eight bits, 1777 in its right
ten bits (i.e. it is equal to the protection address plus 1777). Since the set of
all addresses begins at zero, a block is always an integral multiple of 1O24,0
(2000,) locations. Relocation is accomplished simply by adding the contents
of the appropriate relocation register to the user address, so the first ad-
dress in a block is a multiple of 2000. The relative user and relocated
address configurations are therefore as illustrated here, where P,, R,, P,
and R, are respectively the protection and relocation addresses for the low
and high parts as derived from the &bit registers loaded by the Monitor. If
the low part is larger than 128K locations, i.e. more than half the maxi-
mum memory capacity (Pl 2 400000), the high part starts at the first loca-
tion after the low part (at location P, + 2000). The high part is limited to

-

5-38 KIlO and KAlO System Operations

Note that the relocated low
part is actually in two sections
with the larger beginning at
R1+3-0. This is because ad-
dresses O-l 7 are not relo-
cated, all users having access
to the accumulators. The Mon-
itor uses the first sixteen
locations in the low user block
to store the user’s accumula-
tors when his program is not
running.

Some systems have only the
low pair of protection and
relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

0

P, + 1777

400000

P, + 1777

777777

LOW

ILLEGAL

HIGH

ILLEGAL

.---_-__-

.--------

\
\
\
\
\

‘\ ‘\
\
’ ‘1

/ / \
\ ‘\/

/
’ 4 f
I/‘ \/I
A A

1 \/ \
\

/
/’ ,Y

/ / \
,’ / / \

\
/I \

/

L

0
17

R, + 400000

R,+P,,+1777

I _-_____
RIR, + 20

LOW

+
R,+P,+ 1777

------A I

; R, MUST BE NEGATIVE
, UNLESS SYSTEM HAS A

NON- 1
MEMORY LARGERTHAN

EXISTENT,
128K

MEMORY I
I

---------I

USER ADDRESSES TYPICAL PHYSICAL ADDRESS
BEFORE RELOCATION CONFIGURATION AFTER RELOCATION

128K. If the Monitor defines two parts but does not write-protect the high
part, the user has a two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CON1 APR,), and an interrupt is requested on the
level assigned to the processor (65.6).

Addressing Summary. Let A, be the address supplied by the user, and
let A, be the physical core address generated from it by the relocation
hardware.

If A, s 17, then A, = A, (fast memory, no relocation).

If 20 B A, s P, + 1777, then A, = (A, + R,) mod 218.

If the greater of ~~~~~o
I

d A, d P, + 1777,
1

then A, = (A, + Rh) mod 218.

Any other value of AU is illegal. These are Au < P, + 1777 if either Au <
400000 or Au > P, + 1777.

Note: If a relocated address is in the range O-17, the reference is to core
rather than fast memory.

KIlO and KA .O System Operations 5-39

Monitor Programming

The Monitor must assign the core area for each user program, set up trap
and interrupt locations, specify whether the user can give IO instructions,
transfer control to the user program, and respond appropriately when an
interrupt occurs or an instruction is executed in unrelocated 41 or 61. Core
assignment is made by this instruction.

DATA0 APR, Data Out, Arithmetic Processor

70014 \I1 x I Y

0 12 13 14 17 18 35

Load the protection and relocation registers from the contents of location E
as shown, where P1, P,,, Rl and Rh are the protection and relocation ad-
dresses defined above. If write-protect bit P (bit 17) is 1, do not allow the
user to write in the high part of his area.

P ~18-25 P h 18-2s p Rh,-2,
R

h18-2s
, I 1 1 1 I I I I / 1 / I I I I I I 1 I I I I I I I I I

I I
789’

I I 1 I 1 I I I I
0 16 17 18 25 26 27 34 35

Notes. For a two part nonreentrant program, set P = 0. For a one-part
nonreentrant program, make Ph G P,. If the hardware has only one set of
protection and relocation registers, the user area is defined by P, and R,, the
rest of the word is ignored.

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to
handle his own input-output. The Monitor can also transfer control to the
user with this instruction by programming a 1 in bit 5 of the PC word, or it
may jump to the user program with a JRST 1, which automatically sets
User. The set state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program
and are therefore completely unrestricted, namely those executed in the
interrupt locations (which are not relocated) and in unrelocated trap loca-
tions 41 and 61. Illegal instructions and UUO codes 000 and 040-077 are
trapped in unrelocated 40; codes loo-127 are trapped in unrelocated 60.
(The trap locations are 140-141 and 160-161 in a second KAlO processor.)
BLKI and BLKO can be used in the even interrupt locations, and if there is
no overflow, the processor returns to the interrupted user program. JSR
should ordinarily be used in the remaining even interrupt locations, in odd
interrupt locations following block IO instructions, and in 41 and 61. The
JSR clears User and should jump to the Monitor. JSP, PUSHJ, JSA and
JRST are acceptable in that they clear User, but the first two require an

5-40 KIlO and KAlO System Operations

accumulator (all accumulators should be available to the user) and the
latter two do not save the flags.

After taking appropriate action, the Monitor can return to the user
program with a JRSTF or JEN that restores the flags including User and
User In-out.

5.8 Real Time Clock DKIO

This processor option can be used to signal the end of a specified real time
interval or to measure the real time taken by an event. With appropriate
software the DKlO can easily be used to keep the time of day. The basic
element in the clocklo is an l&bit binary counter that is incremented re-
peatedly by a clock source; a 100 kHz + .Ol% crystal-controlled source is
available internally, or a source of any frequency up to 400 kHz can be
provided externally. Operation is synchronized so that the program can
read the counter at any time without missing a count. Associated with the
counter is an l&bit interval register, which can loaded by the program.
Each time the count reaches the number held in the register, the clock
requests an interrupt while the counter clears and begins a new count.
With the internal clock source, whose period is 10 l_~s, the total count is
about 2.6 seconds.

The program turns the clock on and off by enabling and disabling the
counter. The clock has two modes of operation: with the User Time flag
clear, the counter operates continuously; with User Time set, the counter
stops while the processor is handling interrupts. Hence in the latter mode
the clock discounts interrupt time and can be used to time user programs.
In a system that contains two clocks, one can be used by the Monitor to
time user programs while the other is used to keep the time of day.

Instructions. The clock device code is 070, mnemonic CLK. A second
clock would have device code 074.

CON0 CLK, Conditions Out, Clock

I 70720 I x Y

0 I2 13 14 17 18 35

Assign the interrupt level specified by bits 33-35 of the effective conditions
E and perform the functions specified by bits 23-32 as shown (a 1 in a bit
produces the indicated function, a 0 has no effect).

lo The clock referred to throughout this section is the DKlO real time clock and should not
be confused with the line frequency clock whose flag is one of the processor conditions
($5.3 or P5.6).

KIlO and KAlO System Operations 5-41

SET CLEAR
COUNT COUNT
OVERFLOW OVERFLOW

/ _
/ SET

COUNT COUNT
CLEAR

DONE
CLOCK

18 19 20 21 22 23 24 25 26

1

CLEAR SET TURN TURN CLEAR PRIORITY
USkR USER CLOCK CLOCK I COUNT INTERRUPT
TIME TIME OFF ON DONE ASSIGNMENT

I I
27 28 29 30 31 32 33 34 35

A 1 in bit 26 clears the clock counter and the Count Done, Count
Overflow and User Time flags, turns off the clock, and drops the PI assign-
ment (assigns zero). The effect of giving conflicting conditions is indetermi-
nate.

A 1 in bit 25 increments the counter provided the clock is off (this is for
maintenance only).

CONI CLK, Conditions In, Clock

70724 I x
0 121314 17 18

Y 1
35

Read the contents of the interval register into the left half of location E and
read the status of the clock into bits 26-35 as shown (asterisks indicate bits
that can cause interrupts).

EXTERNAL Ciiuhi
SOURCE OVERFLOW

':

*

\

*

PRIORITY
USER CLOCK COUNT INTERRUPT
TIME ON DONE ASSIGNMENT

I I
I8 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Interrupts are requested on the assigned level by the setting of Count
Overflow and Count Done.

26 The counter is connected to an external source (0 indicates the inter-
nal source is connected).

28 The counter cannot be incremented while an interrupt is being held
or a request has been accepted and the level is waiting for an inter-
rupt to start. Note that to time a user properly, the Monitor must also
compensate for any noninterrupt time taken from the user.

DATA0 CLK, Data Out, Clock

70714 I x Y 1
0 121314 17 18 35

Load the contents of the right half of location E into the interval register.
Notes. The comparison of the counter against the interval register that

follows every count is inhibited while this instruction is loading the regis-
ter.

--

5-42 KIlO and KAlO System Operations

DATAI CLK, Data In, Clock

70704 I x Y
0 I2 1314 17 18 35

Read the current contents of the clock counter into the right half of location
E.

Notes. The counter is always stable while being read, and any count
held back is picked up immediately afterward.

Initially the program should give a CON0 CLK,lOOO to clear the clock,
and then give a DATA0 to select the interval and a CON0 to turn on the
clock, select the mode, and assign the interrupt level. Following turnon the
first count may occur at any time up to the full period of the source. When
the count reaches the specified interval, Count Done sets, requesting an
interrupt on the assigned level. At the same time, the counter clears and a
new count begins with the next pulse. The program should respond with a
CON0 to clear Count Done. Remember that although a CON0 need not
affect the mode or the clock state, every CON0 must renew the PI assign-
ment.

The interval can be changed at any time simply by giving a DATAO.
However, if the program does not clear the counter at the same time, then
it should make sure that the count has not yet reached the value of the new
interval. If the count is already beyond that point, the counter will continue
until it overflows. When the counter overflows, either because the count
started too high, the program specified the maximum count (218 is selected
by loading zero), or there is a malfunction of some sort, Count Overflow
sets, requesting an interrupt, and a new count begins.

To use the clock to time some operation, turn it on with the counter at
zero. For a counter reading of C, the elapsed time is

TE + nn

where T is the period of the source, n is the number of clock interrupts since
the clock was started, and I is the interval selected by the program. To
cause the clock to request an interrupt after T x n PS, where n d 2is and T
is the period of the source in microseconds, load the interval register with n
expressed in binary. There is an average indeterminacy of half a count
every time the counter starts and stops. Therefore, when the clock is keep-
ing user time, there is an average indeterminacy of one count for every
group of overlapping interrupts and requests (not for every interrupt, as the
counter is inhibited while there is any request or interrupt being held).

For keeping the time of day, the program can use a memory location to
maintain a count of the clock interrupts. The location should be cleared at
midnight - note that an error of .Ol% amounts to 8.64 seconds in 24 hours
- and the time can be determined by combining its contents with the
current contents of the clock counter. If the location itself is to be used as a
low resolution clock kept in hours, minutes and seconds, it is better to use a

KIlO and KAlO System Operations 5-43

more convenient interval than the full count. Using the internal source, an
interval of 2% seconds, which is octal 750220, is the most straightforward
interval with the fewest interrupts. To interrupt every second the interval
would be 303240.

5-44 KIlO and KAlO System Operations

Appendix A

Instructions and Mnemonics

The drawing on the next two pages shows the formats of the various types
of instructions, pointers, arithmetic operands, and other special words em-
ployed by the user in the KLlO and KS10 processors. On the two pages
following this drawing is a similar illustration for the KIlO and KAlO. The
chart on pages A-6 and A-7 shows the derivation of the instruction
mnemonics. Next are two tables that list all instruction mnemonics and
their octal codes both numerically and alphabetically. For completeness,
the tables include the MUUOs (indicated by an asterisk) that are recog-
nized by MACRO for communication with the TOPS-10 or TOPS-20
Monitor (only JSYS is applicable to the latter). The great majority of the
instruction codes are the standard ones in the PDP-10 instruction set, and
they are available in all processors. A dagger (+) indicates a now-standard
instruction code that is available in the KLlO and KS10 (and can be ex-
pected to be available in all future processors) but is unassigned in the
earlier processors. Similarly a double dagger ($1 indicates an instruction
that became available in KLlO microcode version 271 and will be in future
machines, but is unassigned in all other circumstances. Footnotes explain
other special situations and variations from one processor to another. KLlO
codes listed as limited to a TOPS-10 system are actually a function of the
individual microcode. Blanks in the numeric table are for codes not as-
signed in any processor, except that JRST blanks actually correspond to
function combinations on the KIlO and KAlO. (Note that 247 and 257 are
executed as no-ops on the KAlO.)

Device codes (which are of course meaningful only in the context of pre-
KS10 IO instructions) are included in the listings only for internal devices,
and they are indented to match their position in an instruction word. Com-
binations of IO mnemonics with internal device codes are included only in
the numeric listing, as the numeric values for all combinations appropriate
to each device are readily available in Appendix C.

Beginning on page A-16 is a list of all instructions showing their ac-
tions in symbolic form. On page A-27 is a table of the positive and negative
powers of 2.

June 1982 A-l

BASIC INSTRUCTIONS
INSTRUCTION CODE

(INCLUDING MODE) A,t= I X I Y
I

0 8 9 12 13 14 17 16 35

KLlO IN-OUT INSTRUCTIONS
1 1 1 DEVICE CODE NSTRUCTIO

CODE I x
I

Y
! I I

0 2 3 9 10 12 13 14 17 16 35

INSTRUCTIONS EXECUTED UNDER EXTEND

I INSTRUCTION CODE 0 0 0 0 / X 1 I 1 I Y I
0 6 9 12 13 14 17 16 35

LOCAL INDIRECT WORD

1 0 RESERVED II x Y I
0 1 13 14 17 18 \ 35

GLOBAL INDIRECT WORD

01 x Y I 0 1 2 5 6 35

LOCAL INDEX REGISTER
IN NONZERO SECTION MUST BE

50 OR BITS 6-17=0 I
LOCAL INDEX

I
0 16 35

GLOBAL INDEX REGISTER

000000 GLOBAL INDEX WITH NONZERO SECTION NUMBER
I I I I

0 5 6 35

SAVED FLAGS
OVERFLOW

CARRY
PREVIOUS CONTEXT* 0

PUBLIC

* KL:O
1

ONLY

USER

CARRY FLOATING
FIRST IN-OUT *

PART USER
1 * ADDRESS TRAP TRAP

zi%?

FLOATING
1 OVERFLOW

DONE
PUBLIC FAILURE 2 1 OVERFLOW Dl%E

USER
INHl8lT

2 3 4 5 6 7 6 9 10 11 12

PC WORD

I
0

FLAGS 0 0 0 0 0 IN-SECTION PC
I 1 I I I

12 13 17 16 35

FLAG-PC DOUBLEWORD

FLAGS 0 0 0 0 0 PROCESSOR-DEPENDENT INFORMATION
I ,

000000
I I

0 5 12 13 17 16 35

A-2 Instructions and Mnemonics June 1982

LOCAL STACK POINTER
CONTROL COUNT

- (IN NONZERO SECTION . . 0 OR BITS 6-l 7 - 0) IN-SECTION ADDRESS OF LAST ITEM
I

0 17 16 35

GLOBAL STACK POINTER

000000 ADDRESS OF LAST ITEM (NONZERO SECTION)

0 5 6 35

ONE-WORD LOCAL BYTE POINTER

1 POSITION P 1 SIZE S lOllI x I Y I

ONE-WORD GLOBAL BYTE POINTER

30-BIT ADDRESS

0 5 6

TWO-WORD BYTE POINTER

POSITION P SIZE S 1 RESERVED AVAILABLE TO USER

I INDIRECT WORD (GLOBAL OR LOCAL) I

0

BYTE STORAGE
I- S BITS -----cr= P BITS -4

1

BYTE NEXT BYTE :

35-P-S * 1 35-P 35-P * I

FIXED POINT OPERANDS (SINGLE PRECISION OR HIGH ORDER WORD)
SIGN

/ 0. BINARY NUMBER (TWOS COMPLEMENT)

i
l- I
0 1 35

LOWER ORDER WORDS IN DOUBLE LENGTH FIXED POINT OPERANDS
SIGN

06
l-

LOWER ORDER PART OF BINARY NUMBER (TWOS COMPLEMENT)

o 1 35

STANDARD RANGE FLOATING POINT OPERANDS (SINGLE PRECISION OR HIGH ORDER WORD)(
“;5” EXCESS 128 EXPONENT

(ONES COMPLEMENT) FRACTION (TWOS COMPLEMENT)
I- 1 0 1 8 9 35

EXPANDED RANGE FLOATING POINT OPERANDS (HIGH ORDER WORD)
SIGN

O+
EXCESS 2048 EXPONENT

FRACTION (TWOS COMPLEMENT)
1
o- 1

(ONES COMPLEMENT)
11 12

LOWER ORDER WORDS IN MULTIPLE LENGTH FLOATING POINT OPERANDS

June 1982 Instructions and Mnemonics A-3

BASIC INSTRUCTIONS

INSTRUCTION CODE
IINCLUDING YOOE)

A,f I X Y

0 89 12 13 14 I, I8 35

IN-OUT INSTRUCTIONS

1 1 11 DEVICE CODE INSTRUCTION

I I I
CODE

1 X Y
1

0 2 3 9 10 I2 I, ,1 I7 18 35

PC WORD

FLAGS 100000 PC
I

0 12: 11 II ,a 35
'7---------_----______---_--______________

’ CARRY I FLOATING FIRST 1 FLOATING ~0 i *XII0 EXECilTlYE NODE

1 I OVERFLOW
PART USER ’ “SER* PUBLIC

/ DONE !
! ,N_OUT

/ AODRESS

i
FAILURL TRAP 2 YRAP 1

/ lNHlI3lT U;FoE$- OIVIOE
0 PREVIOUS CONTEXT PU8LlC

j
6 PREVlOUS CONTEXT USER

1 2 3 4 5 6 7 8 9 10 I, 12

BIT POINTER [XWDI

I SOURCE ADDRESS I DESTINATION ADDRESS I

BLKI/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD {IOWD]

-WORD COUNT ADDRESS-l
I

I 1
0 II I* 35

BYTE POINTER
I

POSITION P
I

SIZE s ;ri x
!

Y

0 56 (! '2 15 11 11 18 35

BYTE STORAGE
+---s 911s _3L____ p 3115 ------I

I
/ BYTE NEXT BYTE /

35.P-S.1 35-P 35-P+! 35

PAGE MAP WORD
OPTA FOR EVEN NUNBERt ,,Rl”Pl PbGL OdTb FOR 000 NUYBEREO VIRTUAL P&GE

/ I

A/P~W;S'x!
PHYSICAL PAGE I 111

~A PIW’S X]
PHYSICAL PAGE

ADDRESS 611s 14-26 1
ADDRESS BITS 14-26 11,

0 12 3 45 17 ,e I9 20 21 22 23 35

PAGE FAIL WORD

u VIRTUAL PAGE
ADDRESS BITS M-26

FAILURE TYPE

0 8 9 II

20 SM.11 USER "lOLllIOn 22 P&GE RfFlLL FLILURE IF BIT ,I I5 0, 8115 31-35 HAVE THIS FORYll
21 PROPRlElPR" "IOLPIION 23 lDORESS FAllURE

KIlO and KAlO Formats - Instruction and Control Words

A4 Instructions and Mnemonics

FIXED POINTOPERANDS (SINGLE PRECISION OR HIGH ORDER WORD)

PAGTI BINARY NUMBER (TWOS COMPLEMENT1 I

0 1 35

LOW ORDER WORD IN DOUBLE LENGTH FIXED POINT OPERANDS

% LOW ORDER HALF Of BINARY NUMBER (TWOS COMPLEMENT)

0 1 I5

FLOATING POINT OPERANDS (SINGLE PRECISION OR HIGH ORDER WORD)
SIGN
0*

EXCESS128 EXPONENT
,- (ONES COMPLEMENTI

FRACTION (TWOS COMPLEMENT)

0 1 8 9 35

LOW ORDER WORD IN SOFTWARE DOUBLE LENGTH FLOATINGPOINTOPERANDS

0 EXCESS128 EXPONENT-27
IN POSIT(VE FORM LOW ORDER HALF OF FRACTIONtTWOS COMPLEMENT)

I
0 I 89 35

LOW ORDER WORD IN HARDWARE DOUBLELENGTH FLOATING POINTOPERANDS

0 LOW ORDER EXTENSION OF FRACTION (TWOS COMPLEMENT1

0 ! 35

KIlO and KAlO Formats - Arithmetic Operands

Instructions and Mnemonics A-5

cXtcndcd I MOVE
Halt \vord Left to Lctt)

Immcd~;~tc 10 AC

BLock Trilllbtcr
c.xtL~lltled BLock Trml.der
tCXCH;mge A<‘ and memory

Douhk ‘WV (F Ncgutivc) (to Memory

to AC

Immcdiatc 10

IO Memorv

IO Self

A(

u4c present pomtcr

) 1
id

LoaD Byte tnto A(’

Incrcmcnt txnntc’r DcPo\it R! tc 111 memory

Incrcmcnt

.AD.lu\t
Hytc Pomter

A(’

AC’ Immcdi;ltc ,t,,

Mcmor\

Both

Add one to

Suhtr;~cr One tram

ADD

SUBtract

MULtiply

Integer MULtipI!

DlVidr

lntcger DlVide
I

t-and kwnd-j tto B0th

Floatmg AdD

Floetmg SuBtract

Flo;mng MultiPly

Fl(Wlng DiVide

FIX

FIX antI Round
FLouT and Round

Double Floating AdD

Double Floating SuBtract

Double Floatmg MultiPly

Double Floating Divide

G Floating AdD

G Floating SuBruct

(; Floatmg MultiPly

G Floating DiVide

(; FIX

(; FIX and Round

G FLoaT and Round

G Double FIX
G Double FIX and Round

Double C FLoaT and Round

G torm;lt to SINGLC prccwm

\inglc preciwm to G format DOUBLE prccwm

Double Fkwtinr Negate

l:nnorm;~lircd bloating Add

Arlthmctlc SHift

I,o+ll SHlft

ROT;lk

A-6 Instructions and Mnemonics

P

PUSH -

POP 11 and Jump

ADJust Stack Pointer

1 10 S&Routine

and Save PC

and Save AC

and Restore AC

if Find First One

on Flap and CLear it

Jump (
Overflow (JFCL IO.)

on CaRrY 0 (JFCL 4.)

on CaRrY I (JFCL 2.)

on CaRrY (JFCL 6.)

tm Floating OVertlow (JFCL I. 1
;tnd ReSTore

and ReSTore Flags (JRST 2.)
, ;md ENahle PI channel (JRST 12.)

HALT (JRST 4.)

PORTAL (JRST I.)

cXcCuTc

Left Justified

MOVc String

(

Right Jwtificd

Offset

Translated

CoMPorc Strings and skip if

i

Less

EtpJUl

Less or Equal

Greater

Greater or E:qual

Not quid

ConVcrt
(

Decimal to Binary

11

Ofhct

Binary to Decimal Translated

EDIT string

DATA
BLocK I

7

(

In

Out

CONditlom

m and Skip if
1

all masked hit> Zero

wme masked hit One

Bit Set

Bit Clear

R&ID

WRite 1

‘l‘C\I In-oU1

Instructions and Mnemonics A-7

INSTRUCTION MNEMONICS

000 ILLEGAL

001
: . LUUO’S

037
CODES UNDER EXTEND

001 tCMPSL
002 tCMPSE
003 WMPSLE
004 tEDIT
005 tCMPSGE
006 tCMPSN
007 tCMPSG
010 tCVTDB0
011 tCVTDBT
012 tCVTBD0
013 tCVTBDT
014 tMOVS0
015 tMOVST
016 tMOVSLJ
017 tMOVSRJ
020 tXBLT
021 $GSNGL
022 SGDBLE
023 SGDFIX
024 SGFIX
025 SGDFIXR
026 SGFIXR
027 $DGFLTR
030 SGFLTR
031 SGFSC

ALL OTHERS UNASSIGNED

040 *CALL

041 *INIT

042

043

044 RESERVED

045 1 MUUO’S

046

047 *CALLI

050 *OPEN

051 *‘I”I’CALL

052

053

054

055 *RENAME

1
Not available in KAlO.

056
057
060
061
062
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
,127
130
131
132
133

134
135

NUMERIC LISTING

*IN
*OUT
*SETSTS
*STAT0
*STATUS
*GETSTS
*STAT2
*INBUF
*OUTBUF
*INPUT
*OUTPUT
*CLOSE
*RELEAS
*MTAPE
*UGETF
*USETI
*USETO
*LOOKUP
*ENTER
*UJEN

SGFAD
SGFSB
*JSYS
tADJSP
SGFMP
SGFDV
’ DFAD
’ DFSB
’ DFMP
’ DFDV
tDADD
tDSUB
tDMUL
tDDIV
’ DMOVE
’ DMOVN
’ FIX
tEXTEND
‘DMOVEM
’ DMOVNM
’ FIXR
’ FLTR
‘UFA
‘DFN
FSC
IBP
ADJBP
ILDB
LDB

136 IDPB
137 DPB
140 FAD
141 ’ FADL
142 FADM
143 FADB
144 FADR
145 FADRI
146 FADRM
147 FADRB
150 FSB
151 ’ FSBL
152 FSBM
153 FSBB
154 FSBR
155 FSBRI
156 FSBRM
157 FSBRB
160 FMP
161 ’ FMPL
162 FMPM
163 FMPB
164 FMPR
165 FMPRI
166 FMPRM
167 FMPRB
170 FDV
171 i FDVL
172 FDVM
173 FDVB
174 FDVR
175 FDVRI
176 FDVRM
177 FDVRB
200 MOVE
201 MOVE1
202 MOVEM
203 MOVES
204 MOVS
205 MOVSI
206 MOVSM
207 MOVSS
210 MOVN
211 MOVNI
212 MOVNM
213 MOVNS
214 MOVM
215 MOVMI
216 MOVMM
217 MOVMS

2
Used only in KAlO, KIlO and TOPS-10 KLlO.

A-8 Instructions and Mnemonics June 1982

220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
25404
25410
25414
25420
25424
25430
25434
25440
25444
25450
25454
25460
25464
25470
25474
255
25504
25510
25520
25530
25540
256
257
260
261
262
263
264
265

IMUL
IMULI
IMULM
IMULB

MULI
MULM
MULB
IDIV
IDIVI
IDIVM
IDIVB
DIV
DIVI
DIVM
DIVB
ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBJN
JRST
PORTAL
JRSTF

HALT
tXJRSTF
tXJEN
tXPcw

JEN

tSFM

JFCL
JFOV
JCRY 1
JCRYO
JCRY
JOV
XCT

2MAP
PUSHJ
PUSH
POP
POPJ
JSR
JSP

266 JSA
267 JRA
270 ADD
271 ADD1
272 ADDM
273 ADDB
274 SUB
275 SUB1
276 SUBM
277 SUBB
300 CA1
301 CAIL
302 CAIE
303 CAILE
304 CAIA
305 CAIGE
306 CAIN
307 CAIG
310 CAM
311 CAML
312 CAME
313 CAMLE
314 CAMA
315 CAMGE
316 CAMN
317 CAMG
320 JUMP
321 JUMPL
322 JUMPE
323 JUMPLE
324 JUMPA
325 JUMPGE
326 JUMPN
327 JUMPG
330 SKIP
331 SKIPL
332 SKIPE
333 SKIPLE
334 SKIPA
335 SKIPGE
336 SKIPN
337 SKIPG
340 AOJ
341 AOJL
342 AOJE
343 AOJLE
344 AOJA
345 AOJGE
346 AOJN
347 AOJG
350 AOS
351 AOSL
352 AOSE
353 AOSLE
354 AOSA
355 AOSGE
356 AOSN
357 AOSG

360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377
400
401
402
403
404
405
406
407
410
411
412
413
414
415

416
417
420
421
422
423
424
425
426
427
430
431
432
433
434

435

436

437

440
441
442
443
444

SOJ
SOJL
SOJE
SOJLE
SOJA
SOJGE
SOJN
SOJG
SOS
SOSL
SOSE
SOSLE
SOSA
SOSGE
SOSN
SOSG
SETZ
SETZI
SETZM
SETZB
AND
AND1
ANDM
ANDB
ANDCA
ANDCAI
ANDCAM
ANDCAB
SETM

tXMOVE1
SETMI
SETMM
SETMB
ANDCM
ANDCMI
ANDCMM
ANDCMB
SETA
SETAI
SETAM
SETAB
XOR
XORI
XCRM
XORB
IOR
OR
IORI
OR1
IORM
ORM
IORB
ORB
ANDCB
ANDCBI
ANDCBM
ANDCBB

EQV

June 1982 Instructions and Mnemonics A-9

445
446
447
450
451
452
453
454
455
456
457
460
461
462
463
464
465
466
467
470
471
472
473
474
475
476
477
500
501

502
503
504
505
506
507
510
511
512
513
514
515
516
517
520
521
522
523
524
525
526
527
530
531
532
533
534
535

EQVI 536
537

EQVB 540
SETCA 541
SETCAI 542
SETCAM 543
SETCAB 544
ORCA 545
ORCAI 546
ORCAM 547
ORCAB 550
SETCM 551
SETCMI 552
SETCMM 553
SETCMB 554
ORCM 555
ORCMI 556
ORCMM 557
ORCMB 560
ORCB 561
ORCBI 562
ORCBM 563
ORCBB 564
SET0 565
SET01 566
SETOM 567
SETOB 570
HLL 571

tXHLL1 572
HLLI 573
HLLM 574
HLLS 575
HRL 576
HRLI 577
HRLM 600
HRLS 601
HLLZ 602
HLLZI 603
HLLZM 604
HLLZS 605
HRLZ 606
HRLZI 607
HRLZM 610
HRLZS 611
HLLO 612
HLLOI 613
HLLOM 614
HLLOS 615
HRLO 616
HRLOI 617
HRLOM 620
HRLOS 621
HLLE 622
HLLEI 623
HLLEM 624
HLLES 625
HRLE 626
HRLEI 627

HRLEM
HRLES
HRR
HRRI
HRRM
HRRS
HLR
HLRI
HLRM
HLRS

HRRZI
HRRZM
HRRZS
HLRZ
HLRZI
HLRZM
HLRZS
HRRO
HRROI
HRROM
HRROS
HLRO
HLROI
HLROM
HLROS
HRRE
HRREI
HRREM
HRRES
HLRE
HLREI
HLREM
HLRES
TRN
TLN
TRNE
TLNE
TRNA
TLNA
TRNN
TLNN
TDN
TSN
TDNE
TSNE
TDNA
TSNA
TDNN
TSNN
TRZ
TLZ
TRZE
TLZE
TRZA
TLZA
TRZN
TLZN

630
631
632
633
634
635
636
637
640
641
642
643
644
645
646
647
650
651
652
653
654
655
656
657
660
661
662
663
664
665
666
667
670
671
672
673
674
675
676
677
70000

70004

70010

70014

70020

70024

70030
70034
70040

TDZ
TSZ
TDZE
TSZE
TDZA
TSZA
TDZN
TSZN
TRC
TLC
TRCE
TLCE
TRCA
TLCA
TRCN
TLCN
TDC
TSC
TDCE
TSCE
TDCA
TSCA
TDCN
TSCN
TRO
TLO
TROE
TLOE
TROA
TLOA
TRON
TLON
TDO
TSO
TDOE
TSOE
TDOA
TSOA
TDON
TSON

3 BLKI
TAPRID
3 DATA1
4 DATA1 APR,
’ RSW
3 BLKO
5 WRFIL
3 DATA0
’ DATA0 APR,
3 CON0
6 WRAPR
3 CON0 APR,
3 CON1
6 RDAPR
3 CON1 APR,
3 CONSZ
3 CONS0
5 RDERA

‘A-10 Instructions and Mnemonics June 1982

-

,’ -

70050
70054
70050

70064

70104

70110
70114

70120

70124

70144
70150
70154
70164
70170
70174
70200

‘SBDIAG
‘DATA0 PI,
WRPI
%ONO PI,
%DPI
kON1 PI,
%DUBR

“3DATAI PAG,
%LRPT
~WRUBR

‘~‘$EyR PAG,

1’3CON0 PAG,
GRDEBR

“3CONI PAG,
5tS’hwA
‘tsWPVA
%WPUA
5tSwPI0
3tSwPV0
StSwUO
%DSPB
,%DPERF

f

1
Not available in KAlO.

3
No longer ueed in KS10 and future machines.

4
Used only in KAlO and KIlO.

June 1982 Instructions and Mnemonics A-11

70204

70210

70214
70220

70224

70230
70240

70244

70250
70254
70260

70264

‘RDTIME
‘%DPUR
‘WRPAE
“RDCSTM
“RDTIM
“CON0 TIM,
“RDINT
“CON1 TIM,
GRDHSB
%VRSPB

‘%%

ZZZ?

ZKZ?
-TIME
‘CON0 MTR,
%RINT
“CON1 MTR,

70270
704
705
710
71054
711
712
713
714
715
720
721
722
723
724
725
000
004
010
014
020
024

5
Used only in KLlO.

6
Used only in KSlO.

1
Used only in KIlO.

WRHSB
“UMOVE
“UMOVEM
‘i’lOE
‘DATA0 PTR,
‘?‘lON
“RDIO
“WRIO
“BSIO
“BCIO
?IOEB
9I0NB
GRDIOB
%IOB
‘BSIOB

ypp

3PI
“3PAG
‘CCA
STIM
5MTR

INSTRUCTION MNEMONICS

ALPHABETIC LISTING

ADD 270
ADDB 273
ADDI 271
ADDM 272
ADJBP 133
ADJSP 105
AND 404
ANDB 407
ANDCA 410
ANDCAB 413
ANDCAI 411
ANDCAM 412
ANDCB 440
ANDCBB 443
ANDCBI 441
ANDCBM 442
ANDCM 420
ANDCMB 423
ANDCMI 421
ANDCMM 422
AND1 405
ANDM 406
AOBJN 253
AOBJP 252
AOJ 340
AOJA 344
AOJE 342
AOJG 347
AOJGE 345
AOJL 341
AOJLE 343
AOJN 346
AOS 350
AOSA 354
AOSE 352
AOSG 357
AOSGE 355
AOSL 351
AOSLE 353
AOSN 356

3APR 000
tAPRID 70000
ASH 240
ASHC 244

‘BCIO 715
BCIOB 725
3BLKI 70000

3BLK0 70010
BLT 251

“SSIO 714
%SIOB 724
CA1 300
CAIA 304
CAIE 302
CAIG 307
CAIGE 305
CAIL 301
CAILE 303
CAIN 306

*CALL 040
*CALLI 047
CAM 310
CAMA 314
CAME 312
CAMG 317
CAMGE 315
CAML 311
CAMLE 313
CAMN 316

‘CCA 014
*CLOSE 070
WLRPT 70140
tCMPSE 002
tCMPSG 007
tCMPSGE 005
tCMPSL 001
tCMPSLE 003
tCMPSN 006
%ONI 70024
CON0 70020
3CONS0 70034
‘CONSZ 70030
tCVTBD0 012
tCVTBDT 013
tCVTDB0 010
tCVTDBT 611
tDADD 114
3DATAI 70004
3DATA0 70014
tDDIV 117
‘DFAD 110
‘DFDV 113
‘DFMP 112
‘DFN 131

‘DFSB 111
$DGFLTR 027
DIV 234
DIVB 237
DIVI 235
DIVM 236
‘DMOVE 120
‘DMOVEM 124
‘DMOVN 121
‘DMOVNM 125
tDMUL 116
DPB 137

tDSUB 115
tEDIT 004
*ENTER 077

EQV 444
EQVB 447
EQVI 445
EQVM 446
EXCH 250
FAD 140
FADB 143

*FADL 141
FADM 142
FADR 144
FADRB 147
FADRI 145
FADRM 146
FDV 170
FDVB 173

*FDVL 171
FDVM 172
FDVR 174
FDVRB 177
FDVRI 175
FDVRM 176
‘FIX 122
‘FIXR 126
‘FLTR 127
FMP 160
FMPB 163

*FMPL 161
FMPM 162
FMPR 164
FMPRB 167
FMPRI 165
FMPRM 166

1
Not available in KAlO.

2
Used only in KAlO, KIlO and TOPS-IO KLlO.

3
No longer used in KS10 and future machines.

A-12 Instructions and Mnemonics

5
Used only in KLlO.

6
Used only in KSlO.

June 1982

FSB
FSBB

‘FSBL
FSBM
FSBR
FSBRB
FSBRI
FSBRM
FSC

$GDBLE
SGDFIX
$GDFIXR
*GETSTS
trGFAD
SGFDV
f GFIX
SGFIXR
SGFLTR
SGFMP
$GFSB
SGFSC
SGSNGL
HALT
HLL
HLLE
HLLEI
HLLEM
HLLES
HLLI

d
HLLM

\ - HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS
HLR
HLRE
HLREI
HLREM
HLRES
HLRI
HLRM
HLRO
HLROI
HLROM
HLROS
HLRS
HLRZ
HLRZI
HLRZM
HLRZS
HRL
HRLE
HRLEI

150
153
151
152
154
157
155
156
132
022
023
025
062
102
107
024
026
030
106
103
031
021
25420
500
530
531
532
533
501
502
520
521
522
523
503
510
511
512
513
544
574
575
576
577
545
546
564
565
566
567
547
554
555
556
557
504
534
535

HRLEM
HRLES
HRLI
HRLM
HRLO
HRLOI
HRLOM
HRLOS
HRLS
HRLZ
HRLZI
HRLZM
HRLZS
HRR
HRRE
HRREI
HRREM
HRRES
HRRI
HRRM
HRRO
HRROI
HRROM
HRROS

HRRZ
HRRZI
HRRZM
HRRZS
IBP
IDIV
IDIVB
IDIVI
IDIVM
IDPB
ILDB
IMUL
IMULB
IMULI
IMULM

*IN
*INBUF
*INIT
*INPUT
IOR
IORB
IORI
IORM
JCRY
JCRYO
JCRYl
JEN
JFCL
JFFO
JFOV
JOV
JRA
JRST

536 JRSTF 25410
537 JSA 266
505 JSP 265
506 JSR 264
524 *JSYS 104
525 JUMP 320
526 JUMPA 324
527 JUMPE 322
507 JUMPG 327
514 JUMPGE 325
515 JUMPL 321
516 JUMPLE 323
517 JUMPN 326
540 LDB 135
570 *LOOKUP 076
571 LSH 242
572 LSHC 246
573 ‘MAP 257
541 MOVE 200
542 MOVE1 201
560 MOVEM 202
561 MOVES 203
562 MOVM 214
563 MOVMI 215
543 MOVMM 216
550 MOVMS 217
551 MOVN 210
552 MOVNI 211
553 MOVNM 212
133 MOVNS 213
230 MOVS 204
233 MOVSI 205
231 +MOVSLJ 016
232 MOVSM 206
136 *MOVSO 014
134 tMOVSRJ 017
220 MOVSS 207
223 *MOVST 015
221 *MTAPE 072
222 ‘MTR 024
056 MUL 224
064 MULB 227
041 MULI 225
066 MULM 226
434 *OPEN 050
437 OR 434
435 ORB 437
436 ORCA 454
25530 ORCAB 457
25520 ORCAI 455
25510 ORCAM 456
25460 ORCB 470
255 ORCBB 473
243 ORCBI 471
25504 ORCBM 472
25540 ORCM 464
267 ORCMB 467
254 ORCMI 465

June 1982 Instructions and Mnemonics A-13

ORCMM
OR1
ORM

*OUT
*OUTBUF
*OUTPUT
=PAG
3PI
POP
POPJ
PORTAL
PUSH
PUSHJ

ttz;

?tkz!
RDEBR
RDERA
RDHSB

z::tT
RDIOB
‘RDMACT
‘RDPERF
RDPI
%DPUR
RDSPB
“RDTIM
5RDTIME
RDUBR
*RELEAS
*RENAME
ROT
ROTC

‘RSW
‘SBDIAG
SETA
SETAB
SETAI
SETAM
SETCA
SETCAB
SETCAI
SETCAM
SETCM
SETCMB
SETCMl
SETCMM
SETM
SETMB
SETMI

466 SETMM 416
435 SET0 474
436 SETOB 477
057 SET01 475
065 SETOM 476
067 *SETSTS 060
010 SETZ 400
004 SETZB 403
262 SETZI 401
263 SETZM 402
25404 tSFM 25460
261 SKIP 330
260 SKIPA 334
70024 SKIPE 332
70204 SKIPG 337
70214 SKIPGE 335
70244 SKIPL 331
70124 SKIPLE 333
70040 SKIPN 336
70230 SOJ 360
70224 SOJA 364
712 SOJE 362
722 SOJG 367
70240 SOJGE 365
70200 SOJL 361
70064 SOJLE 363
70210 SOJN 366
70200 SOS 370
70220 SOSA 374
70204 SOSE 372
70104 SOSG 377
071 SOSGE 375
055 SOSL 371
241 SOSLE 373
245 SOSN 376
70004 *STAT0 061
70050 *STATUS 062
424 *STATZ 063
427 SUB 274
425 SUBB 277
426 SUB1 275
450 SUBM 276
453 5swPIA 70144
451 5sWPIo 70164
452 ‘SWPUA 70154
460 5swPuo 70174
463 ‘SWPVA 70150
461 5swPvo 70170
462 TDC 650
414 TDCA 654
417 TDCE 652
415 TDCN 656

TDN
TDNA
TDNE
TDNN
TDO
TDOA
TDOE
TDON
TDZ
TDZA
TDZE
TDZN
TIM
“TIOE
“TIOEB
6TION
~TIONB
TLC
TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON

TLZA
TLZE
TLZN
TRC
TRCA
TRCE
TRCN
TRN
TRNA
TRNE
TRNN
TRO
TROA
TROE
TRON
TRZ
TRZA
TRZE
TRZN

TSCA
TSCE

610
614
612
616
670
674
672
676
630
634
632
636
020
710
720
711
721
641
645
643
647
601
605 >
603
607
661
665
663
667
621
625
623
627
640
644
642
646
600
604
602
606
660
664
662
666
620
624
622
626
651
655
653

1 4
Not available in KAlO. Used only in KAlO and KILO.

n

‘ Used only in KAlO, KIlO and TOPS-10 KLlO.

3

5
Ueed only in KLlO.

No longer used in KS10 and future machines.
6

Used only in KSlO.

A-14 Instructions and Mnemonics June 1982

TSCN 657
TSN 611
TSNA 615
TSNE 613
TSNN 617
TSO 671
TSOA 675
TSOE 673
TSON 677
TSZ 631
TSZA 635
TSZE 633
TSZN 637

*Tl’CALL 051
*UP A 130
*UGETF 073

*UJEN
*USETI
*USETO

%ii
GWRCSTM
WREBR
WRFIL
-SB

zzT
%‘RIOB
SWRPAE
6wRPI
%%PUR

100
074
075
70020
70244
70254
70120
70010
70270
70264
713
723
70210
70060
70250

%RSPB
WRTIM

%i?
XCT

tXBLT
tXHLLI
tXJEN
tXJRSTF
tXMOVE1
XOR
XORB
XORI
XORM

txPCw

70240
70260
70260
70114
256
020
501
25430
25424
415
430
433
431
432
25434

,

f

June 1982 Instructions and Mnemonics A-15

Algebraic Representation

TRe remaining pages of this appendix list, in symbolic form, the actual
operations performed by the instructions. The grouping is the same as that
used in Chapter 2, and the groups are in the same order.

Boolean

Byte manipulation

Fixed point arithmetic

Floating point arithmetic

Full word data transmission

Half word data transmission

A-20

A-26

A-18

A-19

A-18

A-24

In-out

Program control

Shift and rotate

Stack

Test, arithmetic

Test, logical

A-26

A-25

A-21

A-25

A-21

A-22

The string instructions are too complex to lend themselves in any reason-
able manner to this type of presentation. For them the reader must use the
complete descriptions given in §§2.12-2.14 (the last section includes a
flowchart of EDIT).

The terminology and notation used vary somewhat from that in the
body of the manual, as follows.

AC The accumulator address in bits 9-12 of the instruction word
: (presented by A in the instruction descriptions).

AC+N The address N greater than AC, except that accumulator ad-
dresses wrap around from 17, e.g. AC+3 is 1 if AC is 16.

E The result of the effective address calculation. When E is an
address it has the number of bits appropriate to such use -
depending on the type of processor, whether local or global, etc.
E is eighteen bits unsigned when used as a half word operand,
mask or output conditions; nine bits signed when used as a
scale factor or shift number; and eighteen bits signed when
used as an offset. For any signed quantity, the sign is always bit
18.

ER

EL

The in-section part of E (the right eighteen bits).

The section-number part of E (those bits, if any, at the left of bit
18).

Ei-N The address N greater than E, with a wraparound, where ap-
propriate, from an in-section value of 777777 without changing
the section number.

PC The 30-bit or l&bit program counter; the symbol also repre-
sents the contents of PC when used as the source of an address.

PC+% The address produced by adding 1 to the in-section part of PC
with a wraparound from 777777 (the section number does not
change).

(x) The word contained in register X.

-

A-16 Instructions and Mnemonics

co,
07,

Go,

4

A,B

W,Y)

(X-Y>

A+B

WXE)

/IV++-

+-x+1

The left half of (X).

The right half of (x).

The word contained in X with its left and right halves swapped.

The value of bit n of the quantity A.

A 36-bit word with the l&bit quantity A in its left half and the
l&bit quantity B in its right half (either A or B may be 0).

The contents of registers X and Y concatenated into a double-
word operand.

The contents of registers X to Y concatenated into a multiword
operand.

The word contained in the register addressed by (X1, i.e., ad-
dressed by the word in register X.

The quantity A replaces the quantity B (A and B may be half
words, full words or doublewords). For example,

(AC) + (E) -+ (AC)

means the word in accumulator AC plus the word in memory
location E replaces the word in AC.

The word in AC and the word in E.

The Boolean operators AND, inclusive OR, exclusive OR, and
complement (logical negation).

The arithmetic operators for addition, negation or subtraction,
multiplication, division, and absolute value (magnitude).

Square brackets are used occasionally for grouping, but when they enclose
an arithmetic computation they represent the “largest integer contained
in” the enclosed quantity. With respect to the values of their terms, the
equations for a given instruction are in chronological order; e.g. in the pair
of equations

(AC) + 1 + (AC)
1ffAC) = 0: E + (PC)

the quantity tested in the second equation is the word in AC after it has
been incremented by one.

Instructions and Mnemonics A-17

Full Word Data Transmission

(A(‘)-(F)

(E)+ (AC) MOVS 204 (0, -+ (AC)

0,E -+ (AC) MOVSI 205 E,O + (AC)

(AC) -+ (E) MOVSM 206 (AC), -+ (E)

Zf‘AC # 0: (E) -+ (AC) MOVSS 307 (E), -+ (E)
Ij’AC # 0: (E) + (AC)

- (E) -+ (AC) MOVM 214 I(E) I + (AC)

- [O.El --f (AC) MOVMI ‘15 0,E + (AC)

- (AC) --f (E) MOVMM 216 /(AC)1 -+ (E)

- (E) --f(E) MOVMS 217 l(E)1 +(E)
Zf AC # 0: (E) --f (AC) If' AC # 0: (E) -+ (AC)

[/‘/lot local “1 c‘ wji~wttw: E + (AC)

[f’loc~ill :l C’rc’fiwtlc~c~: 1 .I’ + (AC.)

EXCH

MOVE

MOVE1

MOVEM

MOVES

250

200

‘01

‘02

203

MOVN 310

MOVNI 311

MOVNM 212

MOVNS 213

XMOVl~I 315

DhlOVE

DMOVN

BLT

XB LT

I’0

1’1

751

070

ADD 270

ADDI 271

ADDM 272

ADDB 273

IMUL

IMULI

IMULM

IMULB

IDIV

220 (AC) X (E) -+ (AC)* MUL

221 (AC) X 0,E + (AC)* MULI

222 (AC) X (E) -+ (E)* MULM

223 (AC) X (E) -+ (AC) (E)* MULB

230 (AC) - (E) + (AC) DIV 234

IDIVI 231

IDIVM 232

IDIVB 233

(E.E+ I) + (AC.AC+ I) DMOVEM 1’3 (AC,A(‘+ 1) --f (E.E+ 1)

- (E,E+ 1) + (AC..4(‘+ 1) DMOVNM 175 - (AC,AC+l) 4 (E.E+IJ

,210l’C E, - (AC), + 1 \vortis sturfitzg \\litlt ((AC),) + ((A(‘),) fsec~ iz1gc2-8)

,110 11~3 I (AC)1 \\,ortl.s (see pugc~ 2 -10)

If (AC) > 0: stcrrt \vitll ((AC+1)) + ((AC+2)) utttl go I//I

[f’(AC) < 0: start ~t’itll ((AC’+1) - 1) + ((AC+2) - 1) utttl go tlo\\‘tt

Fixed Point Arithmetic

(AC) + (E) -, (AC) SUB

(AC) + 0,E -+ (AC) SUB1

(AC) + (E) + (E) SUBM

(AC) + (E) -+ (AC) (E) SUBB

REMAINDER -+ (AC+ 1)

(AC) + 0,E + (AC) DIVI

REMAINDER -+ (AC+ I)

(AC) f (E) -+ (E) DIVM

(AC) - (E) -+ (AC) (E) DIVB

REMAINDER -+ (AC+ 1)

274 (AC) - (El -+ (AC)
275 (AC) - 0,E -+ (AC)

276 (AC) - (E) -+ (E)

277 (AC) - (E) -+ (AC) (E)

224 (AC) X (E) -+ (AC,AC+ I)

225 (AC) X 0,E -+ (AC,AC+ 1)

226 (AC) X (E) -, (E)t

227 (AC) X (E) + (AC,AC+l) (E)

235

236

237

(AC,AC+ 1) + (E) --f (AC)

REMAINDER + (AC+ 1)

(AC,AC+l) + 0,E + (AC)

REMAINDER --f (AC+ 1)

(AC,AC+l) + (E) + (E)

(AC,AC+l) + (E) -+ (AC) (E)

REMAINDER + (AC+ 1)

-

-

*The high order word of the product is discarded.

TThe low order word of the product is discarded.

A-18 Instructions and Mnemonics

/-

FAD
FADL
FADM
FADB

FSB 150
FSBL 151
FSBM 152
FSBB 153

FMP 160
FMPL 161
FMPM 162
FMPB 163

FDV
FDVL

f
i.

FDVM
FDVB

140
141
142
143

170
171

172
173

DADD 114 (ACAC -I= 1) + (E,E + 1) ---p (AC,AC + 1)
DSUB 115 (AC,AC + 1) - (E,E + 1) * (AC,AC + 1)
DMUL 116 (AC,AC+ 1) x (EYE + 1) + (AC-AC + 3)
DDIV 117 (AC-AC + 1) + (EYE + 1) --* (AC,AC + 1)

REMAINDER --, (AC + 2,AC + 3)

Floating Point Arithmetic

(AC) + 0% -+ (AC)
(AC) -t- (E) -+ (AC,AC+ 1)

(AC) + (E) * (E)
(AC) + (E) -+ (AC)(E)

(AC) - (E) + (AC)
(AC) - (E) + (AC,AC+ 1)

(AC) - (E) + (E)
(AC) - (E) + (AC)(E)

(AC) x (E) * (AC)
(AC) x (E) + (AC,AC+ 1)

(AC) x (E) + (E)
(AC) x (E) ---, (AC)(E)

(AC) + (E) --* (AC)
(AC) + (E) -+ (AC)
REMAINDER- (AC + 1)
(AC) + (E) ---* (E)
(AC) + (E) + (AC)(E)

DFAD 110 GFAD 102
DFSB 111 GFSB 103
DFMP 112 GFMP 106
DFDV 113 GFDV 107

FADR 144
FADRI 145
FADRM 146
FADRB 147

FSBR 154
FSBRI 155
FSBRM 156
FSBRB 157

FMPR 164
FMPRI 165
FMPRM 166
FMPRB 167

FDVR 174
FDVRI 175

FDVRM 176
FDVRB 177

(AC) + 03 -+ (AC)
(AC) + E,O -+ (AC)

(AC) f (E) + (E)
(AC) + (E) -+ (AC)(E)

(AC) - (E) + (AC)
(AC) - E,O+ (AC)

(AC) - (E) + (E)
(AC) - (E) + (AC)(E)

(AC) x (E) --* (AC)
(AC) x E,O-, (AC)

(AC) x (E) -+ (E)
(AC) x (E) ---f (AC)(E)

(AC) + (E) + (AC)
(AC) + E,O+ (AC)

(AC) + (E) + (E)
(AC) + (E) ---* (AC)(E)

(ACAC + 1) + (E,E + 1) --* (AC,AC + 1)
(AC.AC + 1) - (E,E + 1) + (AC,AC + 1)
(AC,AC+ 1) x (E,E+ 1) + (AC,AC+ 1)
(AC,AC + 1) + (E,E + 1) + (AC,AC + 1)

I
FSC 132 (AC) x 2E+ (AC) GFSC 031 (AC,AC+ 1) x 2E ---, (AC,AC+ 1)

FLTR 127 (E) floated, rounded ---, (AC)
GFLTR 030 (E) floated, rounded + (AC,AC + 1)
DGFLTR 027 (E,E -I- 1) floated, rounded * (AC,AC + 1)

FIX 122 (E) fixed 4 (AC) FIXR 126 (E) fixed, rounded ---$ (AC)
GFIX 024 (E,E + 1) fixed -+ (AC) GFIXR 026 (E-E + 1) fixed9 rounded 4 (AC)

GDFIX 023 (E,E + 1) fixed -+ (AC,AC f 1)
GDFIXR 025 (E,E + 1) fixed, rounded -+ (AC,AC + 1)

GSNGL 021 (E,E + 1) converted 4 (AC) GDBLE 02% (E) converted ---p (AC,AC -t 1)

UFA 130 (AC) + (E) 4 (AC + 1) without normalization
DFN 131 - (ACE) 4 (ACE)

June 1982 Instructions and Mnemonics A-19

SETZ 400

SETZI 401

SETZM 402

SETZB 403

SETA

SETAI

SETAM

SETAB

424 (AC) +(AC) [r~~-cy]

425 (AC) 4 (AC) [no-op]

426 (AC) --t (E)

427 (AC) + (E)

SETM

SETM I

SETMM

SETMB

414 W 4 (AC)
415 0,E + (AC)

416 (E) + (E) [,lo+l, I

417 (E) + (AC) (E)

AND

ANDI

ANDM

ANDB

404 (AC) A (E) --f (AC)

405 (AC) A 0.E + (AC)

406 (AC) A (E) + (E)

407 (AC) A (E) + (AC) (E)

ANDCM 420

0 -3 (AC)

O+(AC)

O+(E)

0 + (AC) (E)

(AC) A - (E) -. (AC)

ANDCMI 4’1 (AC) A - [O,E] + (AC)

ANDCMM 422 (ACJA -(E)-,(E)

ANDCMB 423 (AC) A - (E) --, (AC) (E)

IOR

IORI

IORM

IORB

ORCM

ORCMI

ORCMM

ORCMB

XOR

XORI

XORM

XORB

434 (AC) v (El + (AC)

435 (AC) v 0,E + (AC)

436 (AC) v (E) + (E)

437 (AC) v (E)+(AC) (E)

464 (AC) V - (E) + (AC)

465 (AC) V - [O,E] -. (AC)

466 (AC) v -(E)+(E)

467 (AC) V - (E) + (AC) (E)

430 (AC) Y (E) + (AC)

43 1 (AC) t) 0,E + (AC)

432 (AC) Y (E) + (E)

433 (AC) Y (E)+(AC) (E)

Boolean

SET0

SET01

SETOM

SETOB

SETCA

SETCAI

SETCAM

SETCAB

SETCM

SETCMI

SETCMM

SETCMB

ANDCA

ANDCAI

ANDCAM

ANDCAB

ANDCB

ANDCBI

ANDCBM

ANDCBB

ORCA

ORCAI

ORCAM

ORCAB

ORCB

ORCBI

ORCBM

ORCBB

EQV
EQVI

EQVM

EQVB

474 777777777777 4 (AC)

475 777777777777 -+ (AC)

476 777777777777-+(E)

477 777777777777 + (AC) (E)

450 - (AC) 4 (AC)

45 I - (AC) + (AC)

452 - (AC) + (E)

453 - (AC) -9 (AC) (E)

460 - (E) + (AC)

461 - [O,El + (AC)

462 - (E) + (E)

463 - (E) --, (AC) (E)

410 -(AC)/\ (E)+(Ac)

411 -(AC) A 0,E 4 (AC)

412 -(A~)A(E)+(E)

413 -(AC)/\ (E)-(K)(E)

440 -(AC) A - (E) + (AC)

441 - (AC) A - [O,E] + (AC)

442 -(AC)/\ -(E)-‘(E)

443 - (AC) A - (E) + (AC) (E)

454 - (AC) V (E) + (AC)

455 - (AC) V 0,E -+ (AC)

456 - (AC) v (E) + (E)

457 -(AC)V (E)+(AC)(E)

470 - (AC) v - (E) 4 (AC)

471 - (AC) V - [O,E] -(AC)

472 - (AC) V -(E)+(E)

473 - (AC) V - (E) -+ (AC) (E)

444 - [(AC) Y (E)] + (AC)

445 - [(AC) Y O,E] + (AC)

446 - [(AC) Y (E)] + (E)
447 - [(AC) Y (E)l +(AC) (E)

-

-

A-20 Instructions and Mnemonics

Shift and Rotate

240 (AC)X 2E+(AC) ASHC

241 Rotate (AC) E places ROTC

242 Shift (AC) E places LSHC

Arithmetic Testing

252 (AC)+ 1,l +(AC) Zf(AC)>O:E+(PC)
253 (AC)+ 1,l -(AC) Zf(AC)<O: E+ (PC)

244 (AC,AC+l) X 2E+(AC,ACt

245 Rotate (AC,AC+ 1) E places

246 Shift (AC,AC+l) E places

ASH

- ROT

LSH

AOBJP
AOBJN

300 No-op

301 Zf (AC)< E: skip

302 Zf (AC) = E: skip

303 Zf (AC)<E: skip

304 Skip

305 Zf (AC)> E: skip

306 Zf (AC)f E: skip

307 Zf (AC)> E: skip

320 No-op

321 Zf (AC)<O: E+(PC)

CA1

CAIL

CAIE

CAILE

CAIA

CAIGE

CAIN

CAIG

JUMP

JUMPL

CAM 310

CAML 311

CAME 312

CAMLE 313

CAMA 314

CAMGE 315

CAMN 316

CAMG 317

SKIP 330

SKIPL 331

SKIPE 332

SKIPLE 333

SKIPA 334

SKIPGE 335

SKIPN 336

SKIPG 337

SOJ 360

SOJL 361

SOJE 362

SOJLE 363

SOJA 364

No-op

Zf (AC)<(E): skip

Zf (AC) = (E): skip

Zf (AC) < (E): skip

Skip

Zf (AC)> (E): skip

Zf (AC) #(E): skip

Zf (AC)> (E): skip

ZfACf 0: (E)-,(AC)

Zf AC f 0: (E)+(AC)
Zf (E) < 0: skip

Zf AC f0: (E)+(AC)
Zf (E) = 0: skip

Zf AC #O: (E)-+(AC)
Zf (E)< 0: skip

ZfAC f 0: (E)+(AC)
Skip

ZfAC f 0: (E)+(AC)
Zf (E) > 0: skip

Zf AC f 0: (E)-+(AC)
Zf (E) f 0: skip

Zf AC f0: (E)-'(AC)
Zf (E)> 0: skip

Zf (AC)= 0: E+(PC) JUMPE 322

JUMPLE

JUMPA

JUMPGE

JUMPN

JUMPG

323 Zf'(AC)< 0: E + (PC)

324 E+(PC)

Zf (AC)> 0: E +(PC) 325

326 Zf (AC)#O: E -+(PC>

Zf (AC)> 0: E+(PC) 327

(AC)- I-(AC)

(AC) - l-(AC)
Zf (AC)< 0: E +(PC)

(AC)- l-'(AC)
Zf (AC)= 0: E+(PC)

(AC)- 1 -‘(AC)
Zf (AC)< 0: E+(PC)

(AC) - l+(AC)
E+(PC)

AOJ

AOJL

340

341

(AC)+ I-(AC)

(AC)+ l- (AC)
Zf (AC)< 0: E +(PC)

(AC)+ l+(AC)
Zf (AC) = 0: E + (PC)

(AC)+ l-(AC)
Zf (AC)<O: E-+(PC)

(AC)+ l-'(AC)
E+(PC)

AOJE 342

AOJLE 343

AOJA 344

Instructions and Mnemonics A-21

AOJGE 345

AOJN 346

AOJG

AOS

AOSL

347

350

351

AOSE 352

AOSLE 353

AOSA 354

AOSGE 355

AOSN 356

AOSG 357

TLN 601

TLNE 603

TLNA 605

TLNN 607

TLZ 621

TLZE 623

TLZA 625

TLZN 627

(AC)+ 1 +(AC)
/f‘(AC)> 0: E +(PC)

SOJGE 365

SOJN 366

SOJG 367

SOS

SOSL

370

371

(AC)- l-+(AC)
If(AC) > 0: E + (PC)

(AC)+ l-(AC)
/f(AC)f 0: E+(PC)

(AC)+ 1 +(AC)
If(AC)> 0: E +(PC)

(E) + 1 +(E)
If(AC)f 0: (E)+(AC)

(E) + 1 -+(E)
IfAC f0: (E)+(AC)
/f(E)< 0: skip

(El + 1 + 03
/fAC f 0: (E)+(AC)
If(E) = 0: skip

(El + 1 + (El
IfAC # 0: (E)+(AC)
If(E)<O: skip

(El + 1 + (E)
/fAC#O: (E)+(AC)
Skip

03 + 1 -+ (El
lfAC f 0: (E)+(AC)
If(E) > 0: skip

(El, + 1 -+ 03
lfACf0: (E)-+(AC)
If(E)=+ 0: skip

(El + 1 -+ 03
/j-AC f0: (E)+(AC)
If‘(E)> 0: skip

(AC)- l-(AC)
If(AC)#O: E-+(PC)

(AC) - l-(AC)
if(AC)> 0: E- (PC)

(E)- I-+(E)
ZfAC f 0: (E)-t(AC)

(E) - 1 -+(E)
ZfAC f 0: (E)+(AC)
/f(E)< 0: skip

(E) - 1 -+(E)
If AC f0: (E) -'(AC)
/f(E) = 0: skip

(El - 1 + (E)
1f‘AC # 0: (E)+ (AC)
If(E)< 0: skip

(E) - 1 -+(E)
If AC f 0: (E)-+(AC)
Skip

(E) - 1 +(E)
/j‘ACfO: (E)+(AC)
/f(E) > 0: skip

(EJ - l-+(E)
If ACf 0: (E)+(AC)
Zf‘(E)# 0: skip

(El - 1 + 03
/f‘AC f0: (E)+(AC)
(j‘(E) > 0: skip

SOSE 372

SOSLE 373 -

SOSA 374

SOSGE 375

SOSN 376

SOSG 377

Logical Testing and Modification

No-op TRN 600

/f(AC), A E = 0: skip TRNE 602

Skip TRNA 604

If (AC), A E # 0: skip TRNN 606

No-op

/f(AC), A E = 0: skip

Skip

Ij"(AC), A E f 0: skip

(AC), A - E+(AC)L TRZ 620 (AC), A - E+(AC)R

/f(AQ A E = 0: skip TRZE 622 /f‘(AC)R A E = 0: skip

(AC), A- E-+(AC), (AC&A-E-+ (AC),

(AC), A- E+(AC), skip TRZA 624 (AC), A-E-, (AC), skip

Zf(AC), A E f0: skip TRZN 626 /f (AC)R A E f0: skip
(AC), A- E+(AC)L (AC), A - E -+ (AC),

A-22 Instructions and Mnemonics

TLC

TLCE

.._-

TLCA

TLCN

641

643

(AC),tr E+(AC),

/f(AC), A E = 0: skip

(AC%_ tf E + (AC),

(AC),tf E+(AC)L skip

If‘(AC)L A E f0: skip

(AC),ttE+(AC),

TRC 640

TRCE 642

(AC), v E -+ (AC),

lf'(AC), A E = 0: skip

(AC), tfE+(AC),

(AC)K tf E *(AC), skip

Zf'(AC)R A E f 0: skip

(AC),u E+(AC)R

645

647

TRCA 644

TRCN 646

(A&V E+(AC)K

Zf(AC& A E = 0: skip

(AC), v E --+ (AC),

(AC), v E + (AC), skip

l.f‘(AC), A E f 0: skip

(AC), v E + (AOR

TLO 661

TLOE 663

(AC),V E+(AC),_

Zf‘(AQ_ A E = 0: skip

(AC),v E+(AC),

(AC),vE+(AC,, .skip

/f‘(AC), A E #O: skip

(AC),v E+(AC)L

TRO 660

TROE 662

TLOA 665

TLON 667

TROA 664

TRON 666

TDN 610

TDNE 612

TDNA 614

TDNN 616

No -0p

If((E) = 0: skip

Skip

/f'(AC)A (E)f 0: skip

TSN 611

TSNE 613

TSNA 615

TSNN 617

.vo-op
If‘(AC) A (E), = 0: skip

Skip

If‘ (AC) A (E),f 0: skip

TDZ 630

TDZE 632

(AC)/\-(E)+(AC)

/f‘(AC) A (E) = 0: skip

(AC)/\ -(E)+(AC)

(AC)/\-(E)-+(AC) skip

/f(AC)A(E) f0: skip

(AC)/\-(E)+(AC)

TSZ 631

TSZE 633

(AC)/\-(E),-+(AC)

If (AC) A (E)s= 0: skip

(AC) A - (0, + (AC)

(A(‘)A .skip

lf‘(AC)A (E),fO: skip

(AOA- (E),+(AC)

TDZA 634

TDZN 636

TSZA 635

TSZN 637

TDC 650

TDCE 652

(AC) v (El + (AC)

/f(AC)A(E)= 0: skip

(AC)tc(E)+(AC)

(AC)tc(E)-'(AC)

/f‘(AC) A (E) f 0: skiikip

(AC)tc(E)-(AC)

TSC 651

TSCE 653

(AC)tf(E),+(AC)

/f(AC)A (E)s= 0: skip

(AC)tt(E),-(AC)

(AC)tc(E),+(AC) skip

lf‘(AC) A (EJs f 0: skip

(AC) tf (0, -+ (AC)

TDCA 654

TDCN 656

TSCA 655

TSCN 657

TDO 670

TDOE 672

(AC) v (E) -+ (AC)

/PA = 0: skip

(AC) V(E)+(AC)

(AC)v (E)+(AC) skip

Zf(AC)A(E) f 0: skip

(AC) v (El + (AC)

TSO 671

TSOE 673

(AC)V (Ejs+(AC)

Zf(AC)A(E), = 0: skip

(AC)'/ (E)s+(AC)

(AC)V(E),-(AC) skip

Zf‘(AC)A (E)s f0: skip

(AC)V (E)s '(AC)

TDOA 674

TDON 676

TSOA 675

TSON 677

Instructions and Mnemonics A-23

Half Word Data Transmission

HLL 500 @IL -+ (AC),
HLLI 501 O-+(AC),

HLLM 502 (ACk-+(Eh

HLLS 503 ZfAC f0: (E)+(AC)

HLLO 520

HLLOI 521

HLLOM 522

HLLOS 523

(E)L,777777+ (AC)

0,777777-'(AC)

(AC)L,777777+(E)

777777 +(E)R
1fAC f0: (E)+(AC)

HLR 544

HLRI 545

HLRM 546

HLRS 547

WL+(AC)R

O-+(AG

(AC),+(E),

(E)L+(E)R

ZfAC # 0: (E)-+(AC)

HLRO 564

HLROI 565

HLROM 566

HLROS 567

777777,(E),_+(AC)

777777,0+(AC)

777777,(ACh+(E)

777777,(Eh+(E)
1fAC f0: (E)+(AC)

HRR

HRRI

HRRM

HRRS

540 (E)R+(AC)R

541 E+(AC),

542 (AC),'(E),

543 1j‘AC f0: (E)-'(AC)

HRRO 560

HRROI 561

HRROM 562

HRROS 563

777777,(E),-+(AC)

777777,E+(AC)

777777,(AC)R+(E)

777777-+(Eh
/fAC f0: (E)+(AC)

HRL 504

HRLI 505

HRLM 506

HRLS 507

(E)R -+ (AC),
E+(AC),_

(AC),+ (Eh
0-3~ -+ 03~
/f AC f0: (E)+ (AC)

HLLZ

HLLZI

HLLZM

HLLZS

510

511

512

513

HLLE 530

HLLEI 531

HLLEM 532

HLLES 533

HLRZ 554

HLRZI 555

HLRZM 556

HLRZS 557

HLRE 574

HLREI 575

HLREM 576

HLRES 577

HRRZ 550

HRRZI 551

HRRZM 552

HRRZS 553

HRRE 570

HRREI 571

HRREM 572

HRRES 573

HRLZ 514

HRLZI 515

HRLZM 516

HRLZS 517

(E)L,O + (AC)
O-(AC)

(ACh,O -+ (El
0 -+ (J-St
/j-AC f0: (E)-+(AC)

(E)L,[(E)oX 7777771 +(AC)

O-+(AC)

(AC),,[(AC),X 7777771 +(E)

(E),X 777777+(E)R
VAC f 0: (E)-+(AC)

O,WL -, (AC)

O-(AC)

O,(ACk+ (E)

O,(E),-,(E)

1fAC f 0: (E)+ (AC)

[(E), X 7777771 ,(EjL+(AC)

0 -+ (AC)

[(AC),,X 777777l,(AC),+ (E)

[(E),,X 7777771 ,(Eh-‘(E)
/f AC f 0: (E) -, (AC)

O,(E), -+ (AC)

0,E -, (AC)

O,(ACh+ (E)

O-+(E),
/j-AC f0: (E)-'(AC)

[(E),,X 777777l,(E)~+(AC)

[E,8X 7777771 ,E+(AC)

[(AC),, X 777777l,(AC)~+(E)

(E),, X 777777+ (Eh
/f AC f 0: (E) -, (AC)

(Eht,O -, (AC)
E,O + (AC)

(AC), ,O -, (El

(E)R ,O -+ (E)
1fACfO: (E)-+(AC)

-

A-24 Instructions and Mnemonics

HRLO

HRLOI

HRLOM

HRLOS

XHLLI

524 (E)R,777777 + (AC) HRLE 534 (E),,[(E),, X 7777771 -+ (AC)

525 E,777777 -+ (AC) HRLEI 535 E,[EIS X 7777771 + (AC)

526 (AC)R,777777 + (E) HRLEM 536 (AC),,[(AC),, X 7777771 + (El

527 (E),,777777 + (E) HRLES 537 (Eh,[(Eh X 7777771 -+ (0
If AC # 0: (E) + (AC) If AC f 0: (E) + (AC)

501 E, -+ (AC),

XCT 256

JFFO 243

JFCL

JRST
PORTAL
JRSTF
HALT
XJRSTF
XJEN

XPCW
JEN
SFM

JSR

255

25400
25404

25410
25420
25424
25430
25434

25450
25460

264

JSP 265

JSA 266
JRA 267
MAP 257

PUSH 261

POP 262

PUSHJ 260

Program Control

Execute (E)

If(AC)=O: O+(AC+l)
If (AC) # 0 : E + (PC) (see page 2 -64)

If AC A FLAGS # 0: E + (PC) -AC A FLAGS + FLAGS

E + (PC)
0 + PUBLIC E -+ (PC)
(X), Or (Y)L -+ FLAGS E + (PC)

E --, (PC) stop

(E)L + FLAGS (E+l) -+ (PC)
Dismiss PI (E)L + FLAGS (E+l) + (PC)
FLAGS,0 -+(E) PC+1 + (E+l) (Et2)L -+ FLAGS (Et3) + (PC)

Dismiss PI (x), OY (Y)L + FLAGS E + (PC)
FLAGS,0 + (E)

Zf PCL = 0: FLAGS,PCR tl + (E) E+l -(PC)

If PCL #O: PC+1 --f (E) Et1 + (PC)

Zf PCL = 0: FLAGS,PCRtl -+ (AC) E -, (PC)
If PCL #O: PC+1 + (AC) E + (PC)

(AC) + (E) ER,PCKtl --f (AC) Et1 + (PC)

((WL) + (AC) E + (PC)
PHYSICAL MAP DATA -+ (AC)

Stack

If PCL = 0 or (AC),,6_17 < 0: (AC) + 1 ,l + (AC) (E) + ((AC)R)

IfPCL f 0 and(AC),,,.,, > 0: (AC) + 1 + (AC) (E) -+ ((AC))

I~PCL = 0 or (AC)o,6_17 GO: ((AQR) + (E) (AC) - 1 ,l -+ (AC)
IfPCL f 0 and (AC),,6_17 > 0: ((AC)) -+ (E) (AC) - I -+ (AC)

lfPc, =o: (AC) + 1,l + (AC) FLAGS &+I + ((AC)K)

lf PCL f 0 and (AC)0,6_,7 < 0: (AC) t 1 ,l + (AC) PC+ 1 -+ ((AC)K)

lfPCL # 0 and (AC),,+_,, > 0: (AC) + 1 + (AC) PC+1 + ((AC))
E + (PC)

Instructions and Mnemonics A-25

POPJ

ADJSP

263 lfPCL = 0: ((AC)R)R +W) (AC) - 1 ,l -+ (AC)

IfPCL # 0 and (AC)0,6_1, < 0: ((AC)R)+(PC) (AC) - 1 ,l -+ (AC)

lfPCL f 0 and (AC),,,6_17 > 0: ((AC)) + (PC) (AC) - 1 + (AC)

10.5 lfPCL = 0 or (AC)0,6_17 < 0: (AC)+ I’] ER,ER +(AC)

lfPCL # 0 and (AC)0,6_17 > 0: (AC) + [‘I ER -+ (AC)

IBP 133

AC=0

ADJBP 133

ACfO

LDB

DPB

ILDB

IDPB

135 BYTE IN ((E)) -+ (AC)

137 BYTE IN (AC)+ BYTE IN ((E))

134 IBP and LDB

136 IBP and DPB

Byte Manipulation

Linear operations on pointer in E or E,E+l

IfP-S>O:P-S+P

ZfP-s<o: Y+l+Y 36-S+P

Array operations on pointer in E or E,E+l

36-P
LetA = REMAINDER 7

IfS > 36 -A: 1 + NO DIVIDE

[fS=O: (E)+(AC)or(E,E+l)+(AC,AC+l)

If0 < S < 36 -A: hake copy C of(E) or (E,E+l)

36 - P
Compute (AC) t 7

c 1 = QX BYTES/WORD + R

1 <R< BYTES/WORD =
L!!+[

Y(C} + Q-Y{C\
36 - RXS -A -+ I’{ C\

C + (AC) or (AC,AC+l)

V’

In-out

CON0

CON1

DATA0

BLKO

BLKI

70020 E+ COMMAND CONSZ 70030 If STATUSR A E = 0: skip

70024 STATUS +(E) CONS0 70034 If STATUSR /J E # 0: skip

70014 (E) -+ DATA DATA1 70004 DATA +(E)

70010 (E) + 1 ,l + (E) ((E)R) -'DATA If(E),_ # 0: skip

70000 (E) + 121 + @I DATA + ((E)K) Zf(E),_ # 0: skip

A-26 Instructions and Mnemonics

POWERSOFTWO

2

4

8

16

32

64

128

256

512

1 024

2 048

4 096

8 192

16 384

32 768

65 536

131 072

262 144

524 288

1 048 576

2 097 152

4 194 304

8 388 608

16 777 216

33 554 432

67 108 864

134 217 728

268 435 456

536 870 912

1 073 741 824

2 147 483 648

4 294 967 296

8 589 934 592

17 179 869 184

34 359 738 368

68 719 476 736

137 438 953 472

274 877 906 944

549 755 813 888

1 099 511 627 776

2 199 023 255 552

4 398 046 511 104

8 796 093 022 208

17 592 186 044 416

35 184 372 088 832

70 368 744 177 664

140 737 488 355 328

281 474 976 710 656

562 949 953 421 312

1 125 899 906 842 624

2 251 799 813 685 248

4 503 599 627 370 496

9 007 199 254 740 992

18 014 398 509 481 984

36 028 797 018 963 968

72 057 594 037 927 936

144 115 188 075 855 872

288 230 376 151 711 744

576 460 752 303 423 488

1 152 921 504 606 846 976

2 305 843 009 213 693 952

4 611 686 018 427 387 904

9 223 372 036 854 775 808

18 446 744 073 709 551 616

36 893 488 147 419 103 232

73 786 976 294 838 206 464

147 573 952 589 676 412 928

295.J47 905 179 352 825 856

590 295 810 358 705 651 712

1 180 591 620 717 411 303 424

2 361 183 241 434 822 606 848

4 722 366 482 869 645 213 696

4

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7,

72

10
05

025

0 125

0062 5

0031 25

0015 625

0007 812 5

0003 906 25

0001 953 125

0000 976 562 5

0000 488 281 25

0000 244 140 625

0000 122 070 312 5

0000 061 035 156 25

0000 030 517 578 125

0000 015 258 789 062 5

0000 007 629 394 531 25

0000 003 814 697 265 625

0000 001 907 348 632 812 5

0000 000 953 674 316 406 25

0000 000 476 837 158 203 125

0000 000 238 418 579 101 562 5

0000 000 119 209 289 550 781 25

0000 000 059 604 644 775 390 625

0000 000 029 802 322 387 695 312 5

0000 000 014 901 161 193 847 656 25

0000 OOCI 007 450 580 596 923 828 125

0000 000 003 725 290 298 461 914 062 5

0000 000 001 862 645 149 230 957 031 25

0000 000 000 931 322 574 615 478 515 625

OOOO 000 000 465 661 287 307 739 257 812 5

0000 000 000 232 830 643 653 869 628 906 25

0000 000 000 116 415 321 826 934 814 453 125

0000 000 000 058 207 660 913 467 407 226 562 5

0000 000 000 029 103 830 456 733 703 613 281 25

0000 000 000 014 551 915 228 366 851 806 640 625

0000 000 000 007 275 957 614 183 425 903 320 312 5

0000 000 000 003 637 978 807 091 712 951 660 156 25

0000 000 000 001 818 989 403 545 856 475 830 078 125

OK@ CC0 COO 000 909 494 701 772 928 237 915 039 062 5

0000 000 000 000 454 747 350 886 464 118 957 519 531 25

0000 000 000 000 227 373 675 443 232 059 478 759 765 625

0000 000 000 000 113 686 837 721 616 029 739 379 882 812 5

0000 Ooo 000 000 056 843 418 860 808 014 869 689 941 406 25

0000 000 000 000 028 421 709 430 4M 007 434 844 970 703 125

0000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5

0000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25

0000 OOO 000 000 003 552 713 678 800 500 929 355 621 337 890 625

0000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5

0000 OCG COO 000 000 888 178 419 700 125 232 338 905 334 472 656 25

0000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

0000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5

0000 OC0 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25

0000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625

0000 000 COO 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5

0000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25

0000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125

0000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5

0000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

0000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625

0000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5

0000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25

0000 000 000 000 COO 000 108 420 217 248 550 443 400 745 280 086 994 171 142 578 125

0000 000 000 000 000 000 054 210 108 624 275 221 700 372 640 043 497 085 571 289 062 5

0000 000 000 000 000 000 027 105 054 312 137 610 850 186 320 021 748 542 785 644 531 25

0000 000 000 000 000 000 013 552 527 156 068 805 425 093 160 010 874 271 392 822 265 625

0000 000 000 000 000 000 006 776 263 578 034 402 712 546 580 005 437 135 696 411 132 812 5

0000 000 000 000 000 000 003 388 131 789 017 201 356 273 290 002 718 567 848 205 566 406 25

0000 000 000 000 000 000 001 694 065 894 508 600 678 136 645 001 359 283 924 102 783 203 125

0000 000 000 000 000 000 000 847 032 947 254 300 339 068 322 500 679 641 962 051 391 601 562 5

OOOC M)O 000 000 000 000 000 423 516 473 627 150 169 534 161 250 339 820 981 025 695 800 781 2L

0000 000 000 000 000 000 000 211 758 236 813 575 084 767 080 625 169 910 490 512 847 900 390 62:

Instructions and Mnemonics A-27

Appendix 6

Character Codes

The table on pages B-3 to B-5 lists the complete 1977 ASCII code (ANSI
X3.4-1977). The software handles the full character set, and for a program
that does not handle lower case, it translates input codes 140-174 into the
corresponding upper case codes (100-134) and translates both 175 and 176
into 033, escape. The actual character sets available on different terminals
vary greatly, but usually a terminal without lower case will accept lower
case codes, printing the corresponding upper case character. The definitions
of the control codes are those given by ASCII; most control codes, however,
have no effect on most typical terminals, and the definitions bear no neces-
sary relation to the use of the codes in conjunction with any software.

CAUTION

Output codes are ordinarily passed as they are, with the ex-
pectation that the terminal will ignore irrelevant control
codes, and that a terminal that lacks lower case will print the
corresponding upper case. A terminal that fails to live up to
these assumptions will generally not operate satisfactorily
with TOPS-10 or TOPS-20. Brackets enclose earlier defini-
tions of control codes (mostly 1963 ASCII). The table includes
bit 8 as an even parity bit, the form regularly used for paper
tape and asynchronous operations; odd parity is regularly
used for magnetic tape and synchronous operations.

There are three line printer controllers: the LP20 and LPlOO, which
can handle any printer, and the BAlO, which handles only the LPlO mod-
els. With the LPlOO and BAlO, ten fixed control characters are used for
format control, and the BAlO also recognizes null for fill and delete for
selecting hidden characters. Control characters recognized by the LP20 are
program selectable. Remote stations (not considered in the tables beginning

B-l

on page B-6)
convert lower

generally recognize only line feed and form feed and do not
case codes to upper case. The 64-character print set includes

the figures and upper case; lower case is added for the g&character set
(with the smaller print set, giving a lower case code prints the upper case
character). The LPO5, LP07 and LP14 are available with either set; those
LPlO printers with the larger set (models D and H) can have an optional
96th character hidden under delete. The printable characters are generally
those defined by ASCII, with little if any variation. The 12%character
printer (LPlOE) uses the entire set of 7-bit codes for printable characters,
with characters hidden under the ten control codes that affect the printer
and also under null and delete.

The first two pages of the table of card codes (pages B-10 to B-14) list
the column punches required to represent characters in the ASCII card
code. When reading cards, the software translates the column punch into
the octal code shown; when punching cards, it produces the listed column
punch when given the corresponding code. There are also a few control hole
patterns that the software responds to but does not translate. The next page
lists two earlier DEC card codes that have only the figure and upper case
character subset, plus a few control punches. The remaining pages of the
table show the relationship among the early DEC card codes, the corre-
sponding characters in the ASCII set, and several IBM card keypunches.
Each column punch is produced by a single key on any keypunch for which
a character is listed, the character being that printed at the top of the card.

--

B-2 Character Codes

ASCII CODE

Control Characters

Even
Parity

Bit

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

7-Bit 7-Bit
Decimal Octal

000 000

001 001

002 002

003 003

004 004

Character

NUL

SOH

STX

ETX

EOT

Class’ Remarks

cc

cc

cc

cc

005 005 ENQ cc

006 006 ACK

007 007 BEL

008 010 BS

009 011 HT

010 012 LF3

011 013 VT3

012 014 FF3

013 015 CR

014 016 so

cc

FE

FE

FE

FE

FE

FE

01.5 017 SI

016 020 DLE

017 021 DC1

018 022 DC2

cc

019 023 DC3

020 024 DC4

021 025 NAK

022 026 SYN

023 027 ETB

024 030 CAN

025 031 EM

026 032 SUB

027 033 ESC

028 034 FS

029 035 GS

030 036 RS

031 037 us

cc

cc

cc

IS

IS

IS

IS

Null, tape feed. Control @ (control shift P’).

Start of heading [SOM, start of message]. Control A.

Start of text [EOA, end of address]. Control B.

End of text [EOM, end of message]. Control C.

End of transmission; shuts off TWX machines and disconnects some
data sets. Control D.

Enquiry [WRU, “Who are you?“]. Triggers identification (“Here
is . . .”) at remote station if so equipped. Control E.

Acknowledge [RU, “Are you . . .?“I. Control F.

Bell (audible or attention signal). Control G.

Backspace. Control H.

Horizontal tabulation. Control I.

Line feed. Control J.

Vertical tabulation. Control K.

Form feed (to top of next page). Control L.

Carriage return (to beginning of line). Control M.

Shift out; change character set or change ribbon color to red.
Control N.

Shift in; return to standard character set or color. Control 0.

Data link escape [DCO] . Control P.

Device control 1, turns transmitter (reader) on. Control Q (X ON).

Device control 2, turns punch or auxiliary on. Contrbl R (TAPE,
AUX ON).

Device control 3, turns transmitter (reader) off. Control S (X OFF).

Device control 4 (stop), turns punch or auxiliary off. Control T
@APE, AUX OFF).

Negative acknowledge [ERR, error]. Control U.

Synchronous idle [SYNC]. Control V.

End of transmission block [LEM, logical end of medium]. Control W.

Cancel [S,] . Control X.

End of medium [S,] . Control Y.

Substitute [S,]. Control Z.

Escape, prefix [S,]. Control [(control shift K*).

File separator [S,] . Control \ (control shift L*).

Group separator [S,] . Control] (control shift M*).

Record separator [S,]. Control A (control shift N*).

Unit separator [S,] . Control - (control shift O*).

’ CC communication control, FE format effector, IS information separator.
*On LT33, LT35 and similar units.
3 Includes a carriage return on some equipment, but not on standard DEC units.

Character Codes B-3

Even
Parity

Bit

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

Figures

7-Bit 7-Bit
Decimal Octal Character

032 040

033 041

034 042

035 043

036 044

037 045

038 046

039 047

040 050

041 051

042 052

043 053

044 054

045 055

046 056

047 057

048 060

049 061

050 062

051 063

052 064

053 065

054 066

055 067

056 070

057 071

058 072

059 073

060 074

061 07.5

062 076

063 077

SP
I
I,

(

1
*

t

/

8l
1

2

3

4

5

6

7

8

9

2
=

>

?

Upper Case

Even
Parity 7-Bit 7-Bit

Bit

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

Decimal Octal Character

064 100

065 101

066 102

067 103

068 104

069 105

070 106

071 107

072 110

073 111

074 112

075 113

076 114

077 115

078 116

079 117

080 120

081 121

082 122

083 123

084 124

085 125

086 126

087 127

088 130

089 131

090 132

091 133

092 134

093 135

094 136

095 137

Graphic Characters

(4

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

s

T

U

V

W

X

Y

Z

[
i2
1

/\2

-

Lower Case

Even
Paritv 7-Bit 7-Bit

Bit-

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

Decimal Octal Character3

096 140

097 141

098 142

099 143

100 144

101 145

102 146

103 147

104 150

105 151

106 152

107 153

108 154

109 155

110 156

111 157

112 160

113 161

114 162

115 163

116 164

117 165

118 166

119 167

120 170

121 171

122 172

123 173

124 174

125 175

126 176

127 177

.2

b

d

e

_i
k

u

V

W

X

Y

r”
1’
,2,5

DEL6

1 Zero-slash absent on many units.

2 Under study by responsible American National Standards Committee for possible change at next revision of ASCII
(ca. 1982).

‘Codes 140-l 73 first defined in 1965. For a full ASCII character set the operating system accepts codes 140-I 76 as
lower case. For a program requiring a character set that lacks lower case, the operating system translates input codes
140-174 into the corresponding upper case codes (100-134) and translates both 175 and 176 into 033, escape.
Early versions of the DECsystem-10 Monitor used 175 as the escape code and translated both 176 and 033 to it.

4 Unassigned control character (usually ALT MODE) before 1965. Code generated by ALT MODE key on some DEC
units, especially earlier ones; on some more recent units, the ALT key generates the stanc’ard escape code, 033.

‘Control character ESC before 1965; code generated by ESC key on some DEC units designed at that time.

6Deiete, rub out (not part of lower case set).

B-4 Character Codes

Remarks on Special Graphic Characters

SP Space - normally nonprinting.

!

II

$

%

&

I

(

1
*

t

2

I

<
=

Exclamation point.

Quotation mark, diaeresis.

Number sign. & on some (non-DEC) units.

Dollar sign.

Percent.

Ampersand.

Apostrophe, closing single quotation mark,
acute accent. ’ in appearance on some DEC
units.

Opening parenthesis.

Closing parenthesis.

Asterisk.

Plus.

Comma, cedilla.

Hyphen, minus.

Period, decimal point.

Slant, slash, solidus.

Colon.

Semicolon.

Less than.

Equals.

>

?

(a)

1

\

1

h

\

{

I

1

Greater than.

Question mark.

Commercial at. ’ 1965-67, but never on DEC
units.

Opening bracket. Shift K on LT33, LT35 and
similar units.

Reverse slant. - 1965-67, but never on DEC
units. Shift L on LT33, LT35 and similar units.

Closing bracket. Shift M on LT33, LT35 and
similar units.

Circumflex, upward arrow head. t before 1965,
but used until 1972 on DEC units.

Underline, underscore. .- before 1965, but used
until 1972 on DEC units.

Grave accent, opening single quotation mark.
(a: 1965-67, but never on DEC units.

Opening brace.

Vertical line. Control character ACK before
1965;~1965-67, but never on DEC units;
1 in appearance 1968-1977, but generally not
on DEC units.

Closing brace. Unassigned control character
(usually ALT MODE) before 1965.

Overline, tilde, general accent. Control char-
after ESC before 1965; 1 1965-67, but never
on DEC units.

Character Codes B-5

LINE PRINTER CODE: LPlOA, B, C, D, E

Basic Character Set

Hex Decimal Octal Character

09 009 011 HT

OA 010 012 LF

OB 011 013 VT

oc 012 014 FF

OD 013 015 CR

10 016 020 DLE

11 017 021 DC1

12 018 022 DC2

13 019 023 DC3

14 020 024 DC4

00 000 000 NUL

7F 127 177 DEL

Control

BAlO recognizes all twelve control
codes, LPlOO recognizes the first
ten. LP20 control codes are program
selectable.

Hex Decimal Octal

20 032 040

21 033 041

22 034 042

23 035 043

24 036 044

25 037 045

26 038 046

27 039 047

28 040 050

29 041 051

2A 042 052

2B 043 053

2c 044 054

2D 045 055

2E 046 056

2F 047 057

30 048 060

31 049 061

32 050 062

33 051 063

34 052 064

35 053 065

36 054 066

37 055 067

38 056 070

39 057 071

3A 058 072

3B 059 073

3c 060 074

3D 061 075

3E 062 076

3F 063 077

Figures

Character

SP

I

I,

(

1
*

t

I

0

1

2

3

4

5

6

7

8

9

Hex Decimal

40 064

41 065

42 066

43 067

44 068

45 069

46 070

47 071

48 072

49 073

4A 074

4B 075

4c 076

4D 077

4E 078

4F 079

50 080

51 081

52 082

53 083

54 084

55 085

56 086

57 087

58 088

59 089

5A 090

5B 091

5c 092

5D 093

5E 094

5F 095

Upper Case

Octal Character

-

100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134

135

136

137

(a

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

P

Q
R

s

T

U

V

W

X

Y

Z

[

\

I

C

B-6 Character Codes

Additional Characters - 95, 96 and 128 Character Sets

LPlOD, E LPlOE

Hex Decimal

60 096

61 097

62 09x

63 099

64 100

65 101

66 102

61 10.1

68 104

69 105

6A 106

6 B 107

6C 108

6D I 00

6E 110

6F III

70 112

71 II3

72 II4

73 115

74 I I 6

15 II7

76 II8

77 I19

78 I20

79 I31

7A I22

7B I23

7c I24

7D I25

7E I26

lF/7F 121/l 27

Octal

140

I41

143

143

144

145

I46

147

150

I51

IS’-

I53

154

155

I56

IS7

I 60

I 6 I

I62

I63

I 64

I65

166

167

170

I71

I72

173

174

I75

I76

171/171

Character

b

d

k

ill

n

P

9

”

w

z

- DEL

Hex Decimal Octal

7F/OO 127/000 I77/000

01 001 001

02 002 002

03 003 003

04 004 004

05 00s 005

06 006 006

07 007 007

08 008 010

7F/O9 I271009 177101 I

7F/OA 127/010 1771012

7F/OR 117/011 177/013

7F/OC l27/01? 1771014

7F/OD 127/013 177/015

OE 014 0 I 6

OF 01s 017

7F/lO 127/016 177/020

7F/l I 117/01 I I 77103 I

7F/12 127/018 I771022

7Fll.i 117/010 I771023

7F/l4 I37/020 177/014

IS 02 I 035

I6 022 026

17 023 027

18 024 030

I 9 025 031

IA 026 032

IB 027 033

IC OX 034

ID 029 035

IE 030 036

1F 031 037

Character

- NUI,

L SOH

cl STX

/3 ETX

A EOT

1 ENQ

E ACK

rr BEL

h BS

Y HT
6 LF

i VT
k FF

‘3 CR

m so

a SI

C DI. E

3 DC1

n DC2

U DC3

V DC4

3 NAK

N SYN

+ * h‘TB

- CAN

--f EM

~ SUB

ESC

< FS

> GS

= RS

” us

Code pairs indicate hidden characters. For characters after the 95th, corresponding ASCII control characters are
given in italics to facilitate generating codes at a keyboard. Use of 177 for a hidden character is optional on the
LPlOD.

Character Codes B-7

LINE PRINTER CODE: LPlOF and H, LPOS, LP07, LP14
Basic Character Set

Hex Decimal Octal Character

09 009 011 HT

OA 010 012 LF

OB 011 013 VT

oc 012 014 FF

OD 013 015 CR

10 016 020 DLE

11 017 021 DC1

12 018 022 DC2

13 019 023 DC3

14 020 024 DC4

00 000 000 NUL

7F 127 177 DEL

Control

Table gives character set of LPO5,
LP07 and LP14, and EDP character
set of LPlOFE and HE. Brackets
enclose substitutions for scientific
set, LPlOFF and HF.

Hex

20

21

22

23

24

25

26

27

28

29

2A

2B

2c

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3c

30

3E

3F

Figures

Decimal

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

0.51

052

053

054

055

056

057

058

059

060

061

362

163

Octal

040

041

042

043

044

045

046

047

050

051

052

053

054

055

056

057

060

061

062

063

064

065

066

067

070

071

072

073

074

075

076

077

Character

SP

I
!I

+

I
0 PI
1

2

3

4

5

6

7

8

9

<

=

>

7

Upper Case

Hex Decimal Octal

40 064 100

41 065 101

42 066 102

43 067 103

44 068 104

45 069 105

46 070 106

47 071 107

48 072 110

49 073 111

4A 074 112

4B 075 113

4c 076 114

4D 077 115

4E 078 116

4F 079 117

50 080 120

51 081 121

52 082 122

53 083 123

54 084 124

55 085 125

56 086 126

57 087 127

58 088 130

59 089 131

5A 090 132

5B 091 133

5c 092 134

5D 093 135

5E 094 136

5F 095 137

Character

@

A

B

C

D

E

F

G

H

I

J -

K

L

M

N

0

P

Q
R -

S

T

u

V

W

X

Y

z [Z] --’

[
\
1
4

-

B-8 Character Codes

Additional Characters - LPlOH, LPO5, LP07, LP14

Hex Decimal

60 096

61 097

62 098

63 099

64 100

6.5 101

66 102

67 103

68 104

69 105

6A 106

6B 107

6C 108

6D 109

6E 110

6F 111

Octal Character
140 .

141 a

142 b

143 C

144 d

145 e

146 f

147 .Lz

150 h

151 i

152 j

153 k

154 1

155 m

156 n

157 0

Hex Decimal Octal

70 112 160

71 113 161

72 114 162

73 115 163

74 116 164

75 117 165

7p 118 166

77 119 167

78 120 170

79 121 171

7A 122 172

7B 123 173

7c 124 174

7D 125 175

7E 126 176

7F/7F 127/127 177/177

Character with code 177 is available as an option on LPlOH only and is hidden under delete.

Character

P

9

I

s

t

U

V

W

X

Y

z

{

I

1

+ DEL

Character Codes B-9

ASCII CARD CODE

Column Column Column Column
Octal Character Punch Octal Character Punch Octal Character Punch Octal Character Punch

000 NUL 120981 040

001 SOH 1291 041

002 STX 1292 042

003 ETX 1293 043

004 EOT 9 7 044

005 ENQ 0985 045

006 ACK 0 9 8 6 046

007 BEL 0987 047

010 BS 11 96 050

011 HT 129 6 051

012 LF 095 052

013 VT 12983 053

014 FF 12984 054

015 CR 12985 055

016 so 12986 056

017 SI 12987 057

020 DLE 1211981 060

021 DC1 119 1 061

022 DC2 11 92 062

023 DC3 1193 063

024 DC4 984 064

025 NAK 9 8.5 065

026 SYN 92 066

027 ETB 09 6 067

030 CAN 1198 070

031 EM 11981 071

032 SUB 9 87 072

033 ESC 097 073

034 FS 11984 074

035 GS 11985 075

036 RS 11986 076

037 us 11987 077

SP

I

1,

$

70

&
,

(

1
*

t

I

0

1

2

3

4

5

6

7

8

9

None 100

1287 101

87 102

83 103

11 83 104

084 105

12 106

85 107

128 5 110

1185 111

11 84 112

1286 113

083 114

11 115

1283 116

01 117

0 120

1 121

2 122

3 123

4 124

5 125

6 126

7 127

8 130

9 131

82 132

11 86 133

12 84 134

86 135

086 136

087 137

@

A

B

C

D

E

F

G

H

1

J

K

L

M

N

0

P

Q
R

S

T

U

V

W

X

Y

Z

1

\

1
h

84 140

12 1 141

122 142

123 143

124 144

12 5 145

126 146

127 147

128 150

129 151

11 1 152

11 2 153

113 154

114 155

11 5 156

11 6 1.57

117 160

11 8 161

119 162

02 163

03 164

04 165

05 166

06 167

07 170

08 171

09 172

1282 173

082 174

11 82 175

11 87 176

085 177

a

b

C

d

e

f

g

h

i

j

k

1

m

n

o

P

4

r

s

t

U

v

W

X

Y

;

I

1

DEL

81

12 0 1

12 0 2

12 0 3

12 0 4

12 0 5

12 0 6

12 0 7

12 0 8

12 0 9

12111

12112

12 113

12114

12 11 5

12 11 6

12 117

12 11 8

12 119

11 0 2
-

11 0 3

11 0 4

11 0 5

11 0 6

11 0 7

11 0 8

11 0 9

120

12 11

110

11 0 1

12 9 7

When reading or punching cards, the software translates between the octal codes and column punches listed here.
The software also recognizes the following control punches.

Binary 79
Mode Switch 1202468
End of File 1211016789

B-10 Character Codes

Column
Punch

None

12

11

0

1

2

3

4

5

6

7

8

9

12 11

120

12 1

12 2

12 3

124

12 5

126

12 7

128

129

110

11 1

112

11 3

114

11 5

11 6

117

79

Character

SP

&

0

1

2

3

4

5

6

7

8

9

I

{

A

B

C

D

E

F

G

H

f

J

K

L

M

N

0

P

1202468
1211016789

Column
Punch

11 8

119

01

02

03

04

05

06

07

08

09

92

97

81

82

83

84

8.5

86

87

12 11 1

12 112

12113

12114

12 115

12 11 6

12117

12118

12119

120 1

120 2

1203

Binary
Mode Switch
End of File

Character

Q

R

I

S

T

U

V

W

X

Y

Z

SYN

EOT

.

@
I

_i

k

1

m

n

0

P

q

r

a

b

C

Column
Punch

1204

120 5

1206

1207

1208

1209

129 1

129 2

1293

1295

129 7

1282

128 3

1284

128 5

12 8 6

128 7

110 1

1102

1103

1104

1105

11 06

1107

11 08

1109

119 1

11 92

1193

11 96

11 98

1182

Character

d

e

g

h

i

SOH

STX

ETX

HT

DEL

<

(
+

s

U

V

W

X

Y

Z

DC1

DC2

DC3

BS

CAN

1

Column
Punch Character

11 83 $

11 84 *

1185 >

1186

1187 ’

095 LF

096 ETB

097 ESC

082 \

083 >

084 %

085 -

086 >

087 ?

984 DC4

985 NAK

987 SUB

12983 VT

12984 FF

12985 CR

12986 so

12987 SI

11981 EM

11984 FS

11985 GS

11986 RS

11987 us

0985 ENQ
0986 ACK

0987 BEL

1211981 DLE

120981 NUL

Character Codes B-11

Character

Space
I
!I

$
%
&

;
>
*

t

/
0
1
2

3

4

5

6

7

8

9

Binary
Mode Switch
End of File

7-Bit
Octal DEC 029

040 None
041 11 82*

042 87

043 83

044 11 83

045 084

046 12

047 85

050 12 8 5

051 11 85

0.52 11 84

053 1286

054 083

055 11

056 12 83

057 01

060 0

061 1

062 2

063 3

064 4

065 5

066 6

067 7

070 8

071 9

072 82

073 1186

074 12 84

075 86

\076 086

077 087

79

EARLY DEC CARD CODES

DEC 026

None
1287
085
086
11 83

087
1187

86
084

1284

11 84

12

083

11

1283

01

0

1
2

3
4
5
6
7
8
9
11 8 2 or 11 Ot

082
1286

83
1186

1282or12Oi

Character

@
A

B

C
D

E
F

G
H

1

J

K

L

M

N

0

P

Q
R

s
T
U
V
w
X
Y
Z

[

:
A

7-Bit
Octal DEC 029 DEC 026

100 84 84

101 12 1 12 1
102 12 2 122

103 123 123
104 124 124

105 12 5 12 5

106 126 126
107 12 7 12 7
110 12 8 12 8

111 129 129
112 11 1 11 1

113 112 11 2

114 113 113

115 114 114

116 115 115

117 11 6 11 6

120 117 117
121 11 8 11 8

122 119 119
123 02 02
124 03 03
125 04 04
126 05 05
127 06 06
130 07 07
131 08 08
132 09 09
133 1282 11 85
134 11 8 7* 87

135 0 8 2* 128 5

136 12 8 7* 85

137 085 82

1202468 tThe Monitor accepts either punch for input

1211016789 but outputs only the triple punch.

These two DEC card codes provide a representation for the figure and upper case character subset. DEC 029 is not
available in all programs, but it is almost identical to the ASCII subset, differing only in the four column punches

indicated by asterisks as follows:

DEC 029 11 82 11 87 082 12 8 7

A SCII 1287 082 11 82 11 8 7

The next two pages show the relationship among the various character sets for the column punches listed above,
and where they exist, the corresponding single-key punch configurations and printed characters for several IBM key
punches.

B-12 Character Codes

Column 026 Data
Punch Processing

12

II

12 0

11 0

82

83

84

85

86

87

12 8 2

12 8 3

Column
Punch Character

None Space

0 0

1 I

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

12 1 A

12 2 B

12 3 C

12 4 D

12 5 E

12 6 F

12 7 G

12 8 H

026
Fortran

& +
- -

(a

Column
Punch

12 9 I

11 I J

11 2 K

11 3 L

11 4 M

11 5 N

11 6 0

11 7 P

11 8 Q
11 9 R

0 1 I

02 S

03 T

04 u

05 V

06 W

07 X

08 Y

09 Z

029 DEC 026

& +
_ -

‘)

czz

(u (a
A

I,

\

Q ?

Character

DEC 029 ASCII

& &
_ _

above, and where they exist. the corresponding single-key punch configurations and printed characters for
several IBM key punches.

Character Codes B-13

Column
Punch

026 Data
Processing

12 8 4 n

12 8 5

12 8 6

12 8 7

11 8 2

11 8 3

11 84

11 8 5

11 8 6

11 87

082

083

084 “/o

085

086

087

79

1202468

1211016789

026
Fortran 029

1 <

(
+

I
I

$
*

$
*

1

See note

%
c

>

DEC 026 DEC 029 ASCII

1

1
<
I

;
I,

<

(

+
.

I

$
*

1

;

1

ix7 %

%

Binary

Mode Switch

End of File

>
3

Binary

Mode Switch

End of File

EOT

NOTE : There is a single key for the 0 8 2 punch on the 029 but printing is suppressed.

B-14 Character Codes

Appendix C

Internal Device Bit Assignments

The drawings on the following pages define the meanings of the bits in the
half words and full words of control and status information handled by the
system instructions for the internal devices in the KLlO, KSlO, KIlO and
KAlO processors (bits that cause interrupts are indicated by asterisks). The
section on each device also lists all other instructions for that device, show-
ing the operations performed in symbolic form using the conventions de-
fined for the representation of the user instructions in Appendix A (see
page A-16).

C-l

KLlO PROCESSOR

Priority Interrupt PI 004

ADDRESS
SPACE FUNCTION

INTERRUPTADDRESS
1

0 23 5 6-l loll 12 13 35

FUNCTIONWORD

CON0 PI. 70060

DROP PROGRAM
REQUESTS ON
SELECTED
LEVELS

CONI PI, 70064

INITIATE
INTERRUPTS
ON

SELECTED LEVELS

SELECT LEVELS FOR BITS 22,24,25,26

1 12 j 3 14 15 16 j 7

' 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

I
0 '3

1~2~3~4~5~6~7

I 2 4 5 ' 6 7 8 ' 9 IO I1 ' 12 13 14 ' 15 16 17

PROGRAM REQUESTS ON LEVELS

WRITE EVEN
INTERRUPT IN PROGRESS ON LEVELS

PI
PARITY SYSTEM LEVELS ON

ADDRESS DATA IDlRCTRY 1 I3 14 I I6 17 ON , 2 5 I I2 I3 I4 15 I6 17

I8 19 20 21 22 23 ' 24 25 26 ' 27 28 29 1 30 31 32 1 33 34 35

Cache CCA 014 APR 000

All sweeps initially set Sweep Busy, and at termination they clear Sweep Busy and set Sweep Done,

SWPIA
SWPVA
SWPUA

70144 Invalidate all pages
70150 Validate all pages
70154 Unload all pages

SWPIO 70164
SWPVO 70170
SWPUO 70174

Invalidate page E
Validate page E
Unload page E

WRFIL 70010

REFILL TABLE DATA REFILL TABLE ADDRESS

I I I 1
I8 19 20 21 22 23 ' 24 25 26 27 28 29 I 30 31 32 1 33 34 35

c-2 Internal Device Bit Assignments

TOPS-l 0 Paging

DATAFOREVENVIRTUALPAGE DATA FOR ODD VIRTUAL PAGE

APWSC PHYSICAL PAGE PHYSICAL PAGE

ADDRESS BITS 14-26
IA P W S Cl

ADDRESS BITS 14-26 I
012345 17 18 19 2021 22 23 35

PAGE MAP WORD

FAILURE
TYPE VI VIRTUAL ADDRESS

I

0 I 5678 18 35

IF BIT I IS 0, BITS I-7
HAVE THIS FORMAT

I234567

PAGE FAIL WORD

MAP

VALID MAPPING

257

SOPCl 00 PHYSICAL ADDRESS

0 123456189 13 14 35

NO VALID MAPPING
FAILURE pc 1 o.
I, TYPE

PHYSICAL ADDRESS 1
0 I 567 89 13 14 3s

TOPS-20 Pagirlg

A PMWC PHYSICAL PAGE
ADDRESS BITS 14-26

PAGE MAPPING

CST Words

TABLE ENTRY

MASK WORD

DATA WORD

STATE CODE RESERVED

0 8 35

MASK 1 1 1 1
0 31 32 35

CST MASK WORD

DATA 0000

0 31 32 35

CST DATA WORD

Internal Device Bit Assignments C-3

Section Pointers

NO ACCESS I 0 I I

IMMEDIATE

SHARED

INDIRECT

Map Pointers

NO ACCESS

IMMEDIATE

SHARED

INDIRECT

MAP 257

0 2

1 pb/ c RESERVED s;~;fUG;’ RESERVEI)
PAGE NUMBICK
OF PAGE MAP 1

0 2 3 4 6 I2 17 23 35

RESERVED INDEX TO SPT LOCATION CONTAINING
PAGE ADDRESS OF PACE MAP

0 234 6 18 35

SECTION TABLE INDEX TO SPT LOCATION CONTAINING PAGE
INDEX ADDRESS OF ANOTHER SECTION TABLE’

0 234 6 9 17 18 35

I 0 1 I
0 2

1 IPld I I c RESERVED s;g;It$E RESERVED
PAGE NUMBER
L-OR MAPPING 1

0 234 6 12 17 23 35

2 PW c RESERVED
INDEX TO SPT LOCATION CONTAINING

PAGE ADDRESS FOR MAPPING

0 234 6 18 35

3 PW c PAGE MAP INDEX TO SPT LOCATION CONTAINING
INDEX PAGE ADDRESS OF ANOTHER PAGE MAP

0 234 6 9 17 18 3s

0’1 FAILURE
TYPE I/ VIRTUAL ADDRESS

I

0 I 5678 I2 I3 35

IF BIT I IS 0, BITS l-7
HAVE THIS FORMAT

1234567

PAGE FAIL WORD

VALID MAPPING I/o 1 WOPCl 00 I PHYSICAL ADDRESS
I

01 23456789 I3 14 3s

NO VALID MAPPING Ul
FAILURE

TYPE I 00 UNDEFINED

0 1 56 89 13 14 35

-’

Internal Device Bit Assignments

Memory Management PAG 010 APR 000

APRID 70000

MICROCODE OPTIONS MICROCODE VERSION NUMBER

TOPS-20 EXTENDED EXOTIC
PAGING ADDRESS /KODE 1

0 I 2'3 4 5 ' 6 7 8 9 IO 11 ' 12 13 14 ' 15 16 17

HARDWARE OPTIONS PROCESSOR SERIAL NUMBER

EXTENDED MASTER
50~2 1 CACHE [CHANNELI ~~10 1 osc 1

: 18 19 20 ' 21 22 23 24 25 26 ' 27 28 29 I 30 31 32 I 33 34 35

CON0 PAG, 70120

CONI PAG, 70124

CACHE
STRATEGY

TOPS-20 ENABLE EXECUTIVE BASE ADDRESS (PAGE NUMBER)
PAGING PAGER

LOOK 1 LOAD

18 19 20 21 22 23 ' 24 25 26 1 27 28 29 1 30 31 32 1 33 34 35

DATA0 PAG,

DATA1 PAC.

70114

70104

SELECT LOAD
",;" PREVIOUS USER

CURRENT PREVIOUS
CONTEXT

PREVIOUS CONTEXT

BLOCKS CONTEXT BASL AC BLOCK AC BLOCK SECTION

SECTION ADDRESS
I I 1

0 1 2 3 4 5 6 7 8 9 10 II 12 13 14 ' 15 16 17

DO NC:
UPDATE USER BASE ADDRESS (PAGE NUMBER)
ACCOUNTS

1

I8 19 20 ' 21 22 23 ' 24 25 26 ' 21 28 29 ' 30 31 32 1 33 34 35

CLRPT 70110 Irlvalidate page table line{-pair) E, 8- 2 3

DATA0 APR, 70014

DATA1 APR, 70004

!,‘;I
\ /’

\ /’
‘I f ’

RESERVED CONDITIONS BREAK AI)DRKSS

9 I2 I3 35

Internal Device Bit Assignments C-5

Meters TIM 020 MTR 024

EVEN NUMBERED WORD ODD NUMBERED WORD

I
HIGH ORDER PART OF COUNT 0 LOW ORDER PART OF COUNT RESERVED

I I
0 35 0 I I 23124 35

I
36 581

COUNTER

43 58

DOUBLEWORD METER COUNT

CON0 MTR, 70260

SET ACCOUNTING TIME BASE PRIORITY

K&TS
EXECUTIVEEXECUTIVE TURN INTERRUPT

Pi NON-PI TURN TURN ASSIGNMENT

I ACCOUNT ACCOUNT ON OFF ON
CLEAR

I I I I I I I
If3 19 20 21 22 23 24 25 26 27 28 29 1 30 34 32 33 34 35

CONI MTR, 70264

J

1

ACCOUNTING TIME PRIORITY
EXECUllVEEXECUnVE BASE INTERRUPT

PI NON-PI ON ASSIGNMENT
I I ACCOUNT ACCOUNT ON I I I I I I I I

18 jg 20 2t 22 23 24 25 26 ' 27 28 29 ' 30 34 32 33 34 35

RDTIME 70204 (EPT 510,511) + (COUNTER)+ (E,E+l)

-

CON0 TIM, 70220

I 1 1 I I I 1
CLEAR TURN CLEAR

INTERVAL
COUNTER

;;;;$"E INTERVAL INTERVAL PERIOD

ON FLAGS
I I I 1 I I I I I I I I

18 19 20 21 22 23 24 25 26 ' 27 28 29 ' 30 34 32 33 34 35

CONI TIM, 70224

INTERVAL COUNT

I I 1 I I I I I I I I I I I I I
0 1 2 ' 3 4 5 6 7 8 '9 10 11 ' 12 13 14 ' 15 16 17

INTERVAL CCLlNTER INTERVAL PERIOD

0 N DONE OVERFLOW
I I I I I I I I I I I I I

18 I9 20 21 22 23 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

RDEACT 70244 (UPT 504,505) + (COUNTER) --f (E,E+ 1)

Internal Device Bit Assignments

-

RDMACT 70240 (UPT 506,507) + (COUNTER)+ (E,E+l)

WRPAE 70210
t t t t

SELECT SELECT MEMORY CONDITIONS

SELECT CHANNELS IGNORE PROBE CACHE
UCODE CACHE WRITE SWEEP

0, 1 , 2131415, 6 , 7 1 IGNORE LOW , IGNORE EWABpTX , MISS , BACK , WRITE , IGNORE

0 1 2 13 4 5 ' 6 7 8 3 10 11 12 13 14 ' 15 16 17

SELECT INTERRUPT LEVELS SELECT
MOOt

S,:',',"; CLEAR

CoUNTER
0 , I , 1 , 3, 4

METHOD
, 5 , 6 , 7 ,NONE USER , ,GNORL I I I I

j.8 19 20 ' 21 22 23 ' 24 25 26 27 28 29 30 31 32 ' 33 34 35

t 0s select conditions in these bits

RDPERF 70200 (EPT512,513)+ (COUNTER)'(E,E+I)

Processor Error Logic APR 000 PI 004

CON0 APR. 70020

L ._. ._ _._, .__ .~ SELECT FLAGS FOR E,TS 20 23 PRIOHITY
ALL IN-OUT INTERRUPT

IN OUT SFLFCTEO FLAGS S BUS NO PAGE MB CACHE ADDRESS POWER SWEEP ASSIGNMENT
D F L’ I C i S

I I I ERROR MEMORY FAILURE PARITY DIRCTHY PARITY FAILURE DONE I I

18 19 20'21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

CONI APR, 70024

FLAGS ENABLED TO INTERRUPT

S BUS NO 'pNnp M8 CACHE ADDRESS POWER SWEEP
ERROR MEMORY FAlLURE PARITY DIRCTRY PARITY FAILURE1 DONE

0 I 2 ' 3 4 5 6 7 8 ' 9 IO II 12 13 14 ' 15 16 17

SWEEP
BUSY

* * l + c * * *

S BUS NO IN-OUT YE D;;;;;Y ADDRESS
PRIORITY

ERROR MEMORY F;,I\LGUERE 'pRRd;; P&P;&
POWER SWEEP INTRUPT

PpRRd;; FAILURE DONE REQUEST
INTERRUPT
ASSIGNMENT

18 19 20 ' 21 22 23 24 25 26 27 28 23 30 31 32 33 34 35

RDERA 70040

WORD
NUMBER REFERENCE IDENTIFICATION INDETERMINATE

o 0 0 0 0 HIGH ORDER
ADDRESS BITS

SWEEP ~CHANNE L/ DATA 1 SOURCE 1 WRITE

0 I 2 ' 3 4 5 ' 6 7 8 3 IO II ' 12 13 14 ' I5 16 17

PHYSICAL ADDRESS OF FIRST WORD OF TRANSFER

I

18 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 I 30 31 32 1 33 34 35

Internal Device Bit Assignments C-7

KS10 PROCESSOR

IO Address

0

00000 (c 1 REGISTER ADDRESS

13 14 17 18 35

Priority Interrupt

WRPI 70060

DROP PROGRAM
REQUESTS ON
SELECTED
LEVELS

INITIATE
INTERRUPTS
ON

SELEFTED LEYELS /

18 19 20 ’ 21 22 23 24 25 26

RDPI

TURN TURN
OFF ON SELECT LEVELS FOR BITS 22, 24,25,26

PI SYSTEM
I I 12 13 14 15 16 17

27 28 29 ' 30 31 32 ' 33 34 35

PROGRAM REOUESTS ON LEVELS

I L I~2~3~4j5~6~7

0 I 2 ' 3 4 5 ' 6 7 8 '9 10 II ' 12 13 14 ' 15 16 !7

INTERRUPT IN PROGRESS ON LEVELS
PI

SYSTEM LEVELS ON

ON
I I2 (3 I 4 15 16 17 112 131415 1617

It3 I9 20 21 22 23 ' 24 25 26 ' 27 28 23 1 30 31 32 ' 33 34 35

TOPS-l 0 Paging

DATA FOR EVEN VIRTUAL PAGE DATA FOR ODD VIRTUAL PAGE
I

A SC PHYSICAL PAGE A WSC PHYSICAL PAGE
ADDRESS BITS 17-26 ADDRESS BITS I7 -26

01234 8 171819202122 26 35

PAGE MAP WORD

U 36 OR 37 0 0 P 000 I ADDRESS

01 5 8 17 18 35

HARD PAGE FAIL WORD 36 OR 31

u 20 OOlOlOOB IO ADDRESS

0 1 5 8 10 13 14 35

HARD PAGE FAIL WORD 20

Internal Device Bit Assignments

-

INACCESSIBLE -1 WRITE VIOLATION mli[@$$

12345618 12345678

SOFT PAGE FAIL WORD

MAP 257

ACCESSIBLE uolwsoocl 000 PHYSICAL ADDRESS
1

0123456789 lb 17 35

TOPS-20 Paging

MC PHYSICAL PAGE

ADDRESS BITS 17-26

PAGE MAPPING

CST Words

TABLE ENTRY STATE CODE RESERVED M

0 8 35

MASK WORD MASK II 1 1 11
0 31 32 35

PROCESS USE WORD 1 AGE DATA & OTHER INFORMATION 10 0 0 01

0 31 32 35

Section Pointers

NO ACCESS lot I

0 2

IMMEDIATE 1 1 lb/[ICI RkSERVEDI ‘;$pu(;ME 1 RESERVED 1 PAGE NUMBER
OF PAGE MAP

0 2 3 4 6 12 17 23 35

SHARED 2 c RESERVED INDEX TO SPT LOCATION CONTAINING
PAGE ADDRESS OF PAGE MAP

0 234 6 18 35

INDIRECT 3 I Iwl Id SECTION TABLE INDEX TO SPT LOCATION CONTAINING PAGE
INDEX ADDRESS OF ANOTHER SECTION TABLE

0 234 6 9 17 18 35

Internal Device Bit Assignments C-9

Map Pointers

NO ACCESS 0

IMMEDIATE STORAGE
RESERVED

PAGE NUMBER
MEDIUM FOR MAPPING

0 234 6 12 17 23 35

SHARED

INDIRECT

WI cl RESERVED
INDEX TO SPT LOCATION CONTAINING

PAGE ADDRESS FOR MAPPING

0 234 6 18 3s

3 w c PAGE MAP INDEX TO SPT LOCATION CONTAINING
INDEX PAGE ADDRESS OF ANOTHER PAGE MAP

0 234 6 9 17 18 3s

I

U 36 oR 37 0 0 P 000 I ADDRESS
I

0 1 5 8 17 18 3s

HARD PAGE FAIL WORD 36 OR37

u 20 0010100B IO ADDRESS

0 1 5 8 10 13 14 35

HARD PAGE FAIL WORD 20

WRITE VIOLATION jo1iTo/o11jo/o/11 OTHER FAILURE

12345678 12345678

SOFT PAGE FAIL WORD

MAP

ACCESSIBLE 000 PHYSICAL ADDRESS

0123456789 16 17 3s

Memory Management

APRID 70000

MICROCODE OPTIONS MICROCODE VERSION NUMBER

I
0 I 2'3 4 5 ' 6 7 8 9 10 11 ' 12 13 14 ' 15 16 17

HARDWARE OPTIONS PROCESSOR SERIAL NUMBER

18 19 20 21 22 23 I 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

-

c-10 Internal Device Bit Assignments

WREBR 70120
RDEBR 70124

TOPS?0 ENAELE
PAGING PACER

EXECUTIVE BASE ADDRESS (PAGE NUMBER)

1 1 I I

10 19 20 ' 21 22 23 ' 24 25 26 I 27 28 29 I 30 31 32 I 33 34 35

WRUBR 70114
RDUBR 70104

s%Y
GAD CURRENT PREVlOlJS
bSER

AC BLOCK
CONTEXT

BLOCKS BASE AC BLOCK

ADDRESS 1
0 1 2 3 4 5 6 7 0 9 IO I1 12 13 14 ! 15 I6 17

USER BASE ADDRESS (PAGE NUMBER1

18 19 20 ' 21 22 23 I 24 25 26 ' 27 28 29 ' 30 31 32 1 33 34 35

CLRPT

WRSPB 70240

RDSPB 70200

WRCSB 70244

RDCSB 70204

WRCSTM 70254

RDCSTM 70214

WRPUR 70250

RDPUR 70210

UMOVE 704

UMOVEM 705

70110 Invalidate page table line E18_16
Invalidate cache

(E) -+ (SPT BASE)

(SPTBASE) - (E)

(E) + (CSTBASE)

(CSTBASE) + (E)

(E) + (CSTMASK)

(CSTMASK) + (E)

(E) -+ (PROCESSUSE)

(PROCESSUSE) + (E)

PXCT 4JMOVE A,El

PXCT 4,[MOVEM A,El

Internal Device Bit Assignments c-11

System Timing

WRTIM

RDTIM 70220

WRINT 70264

RDINT 70224

70260 (E,E + 1c1_23) -+ (TIME BASE)

0 - (TIME BASE~J.~~)

(TIMEBASE) + (COUNTER) - (E,E+~)

(E)+ (INTERVAL)

(INTERVAL)+ (E)

Halt Status

HALTCODE + (0)

(PC) - (1)

(REGISTERFILE a VMA) -+ (HALTSTATUSBLOCK)

WRHSB

RDHSB

System Flags

70270

70230

WRAPR 70020

)

RDAPR 70024

(E) + (HALTSTATUSBASE)

If (E),, = 0: disable status storage

(HALT sTATus BASE) -+ (E)

SELECT FLAGS FOR BITS 20 - 23 PRIORITY
Rs%l) <.l>rnliTD INTERRUPT

lNTH”PT POWtR NO MCM”(1” MtMOHY INTtR”nL CONSOLt ASSIGNMENT
*LA(i Zd CONSOLL II\,LUHt MLMOHY llaTa uarn DONk INiRUPT I 1

24 25 26 27 28 29 30 31 32 33 34 35

* * * + * * * *

BAD CORLCTD
PRIORITY

,lA,Id () F;y;;t /ZRY MtMORY MEMORY ‘N;;;y*;’ COWJJLE INTRUPT INTERRUPT
DI\T1\ onin lNTR”PT RE”“FST ASSIGNMENT

I 1 I I I

18 19 20 ’ 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

c-12 Internal Device Bit Assignments

Memory Status

Read

“NCOR
ERROR RECTABLE REFRESH PARITY ECC

ERROR CORRECTION CODE

HOLO ERROR ERROR ERROR ON
HOLO

CP 1 c40 1 c20 1 Cl0 1 c4 I c2 I Cl

0 I 2 3 4 5 '6 7 8 19 IO 11

LAST ADDRESS OR FIRST ERROR ADDRESS

I , I 1 I I 1 I 1 I 1 I 1 1

18 ’ 19 20 21 22 23 ' 24 25 26 i 27 28 29 ' 30 31 32 1 33 34 35

Write

,
FORCE CHECK BITS

ECC
OFF

I I 1 I I I I I I CP 1 c40 1 c20 1 Cl0 1 c4 1 c2 1 Cl

I8 19 20 ' 21 22 73 I 24 25 16 1 27 28 29 1 30 31 32 1 33 34 35

Internal Device Bit Assignments c-13

KI 10 PROCESSOR

Console APR 000 PI 004 PTR 104

DATA1 APR, 70004 VW -, WI

DATA0 PI, 70054 If Ml PROG DIS = 0: (E) + (MI)
1 + PROGRAM DATA

DATA0 PTR, 71054

INST DATA ADDRESS EXEC USER
FETCH FETCH

WRITE
BREAK PAGING PAGING

1
0 1 2 3 4 5 6 J 7 8

__----

__----- _----

r

I ADDRESS SWITCHES

0 6 14 35

Priority Interrupt PI 004

FUNCTION

\

INCREMENT INTERRUPT ADDRESS
1

3 56 17 18 35

CON0 PI, 70060

FUNCTION WORD

DROP PROGRAM
REQUESTS ON
SELECTED
LEVELS

INITIATE
INTERRUPTS
ON

DEACTIVATE ACTIVATE
PI PI

CLEAR CLEAR DISABLE ENABLE
POWER PARITY

\ CLEAR ' I ON '
TURN TURN

OFF \ /

FAILURE ERROR PARITY ERROR PI SELECT LEVELS FOR BITS 22,24,25,26

FLAG FLAG INTERRUPT SYSTEM SELECTED LEVELS
1 I I 1 12 13 14 15 16 17

18 19 20 ' 21 22 23 24 25 26 27 28 29 I 30 31 32 ' 33 34 35

CONI PI,

INS1 DATA PAR NXM

FETCH FETCH
WRITE

ADDRESS ADDRESS EXEC USER PROGRAM REQUESTS ON LEVELS
STOP BREAK PAGING PAGING STOP STOP

1~2~3~4~5~6~7

0 1 2 ' 3 4 5 ' 6 7 6 ' 9 10 11 ' 12 13 14 ' 15 16 17

INTERRUPT IN PROGRESS ON LEVELS

11 2 13 14 15 16 17

18 19 20 21 22 23 1 24 25 26 ' 27

PI
SYSTEM

LEVELS ON (ACTIVE)

ON
1121314151617

28 29 I 30 31 32 1 33 34 35

MR.0745

-

c-14 Internal Device Bit Assignments

Memory Management PAG 010

DATA FOR EVEN VIRTUAL PAGE DATA I,OR ODD VIRTUAL PAGE

APWSX PHYSICAL PAGE
ADDRESS BITS 14-26 APWSX PHYSICAL PAGE

ADDRESS BITS 14-26

012345 171819202l222.3 35

PAGE MAP WORD

I u VIRTUAL PAGE FAILURE
TYPE

89 17 31 35

PAGE FAIL WORD

DATA0 PAG, 70114 0 -+ ASSOCIATIVE MEMORY

DATA1 PAG, 70104

USER FAST
USER

LOAD SMALL ADDRESS

LEFT
MEMORY

BLOCK
USER COMPARE

USER BASE ADDRESS

I ENABLE I I I I I I I I I

'
I I I

0 1 2 3 4 5 6 7 8 ' 9 10 11 ' 12 13 14 ' 15 16 17

LOAD PAGE
RIGfiT ENABLE

EXECUTIVE BASE ADDRESS

I I I I I I I I I I I I 1
I8 19 20 21 22 23 ' 24 25 26 ' 27 28 29 1 30 31 32 1 33 34 35

CON0 PAC. 70120

EXECUTIVE AC PAGE TABLE
STACK POINTER RELOAD COUNTER

I I I I I I I I I I I I I I I

I8 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

CON1 PAG, 70124

PROCESSOR SERIAL NUMBER

I 1 I I I I I I I I I

13
I I

16
I 1

0 I 2 4 5 7 8 19 10 I1 ' 12 13 14 1 15 16 17

EXECUTIVE
COMPLEMENT OF VIRTUAL PAGE NUMBER ADDRESS

WORD PAGE TABLE

SPACE
EMPTY RELOAD COUNTER

I I 1 I I I I I I I I I I

18 19 20 ' 21 22 23 1 24 25 26 27 28 29 30 31 32 ' 33 34 35

MR-0746

Internal Device Bit Assignments c-15

MAP 257

PAGE p W S NO PHYSICAL PAGE
FAILURE MATCH ADDRESS BITS 14-26

I I I I I I I I I I I I
18 19 20 21 22 23 I 24 25 26 1 27 28 29 1 30 31 32 1 33 34 35

Processor Conditions APR 000

CON0 APR, 70020

OISABLE ENABLE DISABLE ENABLE

; I
CON1 APR, 70024

MAINTENANCE
MODE

/

PARITY
ERROR
INTERRUPT

* ENABLED *

CLEAR
NONEXISTENT
MEMORY

/

1

MARGIN / VOLTAGE
;;,",'," MONITOR

SENSE SWITCHES
ENABLE

LOW 1 2, 3 4 , 5 6

7 8 9 10 11 12 13 14 ' 15 16 17

CLOCK
INTERRUPT NONEXlSKNl
ENABLED MEMORY
I* * * /

TIME PARITY I

EtA%O F,'%Rf ;l;i%o

IN-OUT PRIORITY INTERRUPT PRIORITY INTERRUPT
OUT ERROR

CLOCK PAGE
FAILURE

ASSIGNMENT-ERROR ASSIGNMENT-CLOCK

I I I I
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

DATA0 APR, 70014

TURN TURN
OFF ON

VOLTAGE
MARGIN ADDRESS

MARGINS
I I I I

0 1 2 3 4 5 6 7 8 3 10 11 12 13 14 ' 15 16 17

WRITE
TURN TURN

EVEN OFF ON

PARITY SPEED
MARGIN VALUE

MARGINS
I I I 1 I

18 19 20 21 22 23 I 24 25 26 27 28 29 30 31 32 1 33 34 35

MR-0747

C-16 Internal Device Bit Assignments

KAlO PROCESSOR

Console APR 000

DATA1 APR, 70004 CDS) + (E) (RSW)

Processor Conditions APR 000

CON0 APR, 70020

CLEAR CLEAR CLEAR CLEAR CLEAR
PUSHDOWN MEMORY NONEXISTENT FLOATING OVERFLOW
OVERFLOW PROTECTION MEMORY FLAG OVERFLOW I

I I I I I
30 31 32 1 33 34 35

CON1 APR, 70024

PUSHDOWN MEMORY NONEXISTENT CLOCK FLOATING FLOATING OVERFLOW OVERFLOW
OVERFLOW PROTECTION MEMORY INTERRUPT OVERFLOW OVERFLOW INTERRUPT

\

FLAG
* * * * /

ENABLED INTERRUPT

/* /
ENABLED zic

!

ENABLED

I * /

\
PRIORITY

CLOCK INTERRUPT
ASSIGNMENT
I I

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Internal Device Bit Assignments c-17

Priority Interrupt PI 004

CON0 PI, 70060

INITIATE
INTERRUPTS Dp:ACT'VATE

ACTIVATE
PI

ON

CLEAR CLEAR DISABLE ENABLE CLEAR I I
TURN TURN

POWER PARITY PI
ON OFF

PARITY ERROR
SELECT LEVELS FOR BITS 24,25,26

FAILURE ERROR
FLAG FLAG INTERRUPT SYSTEM SELECTED LEVELS

1 I 1 11 2 13 14 15 16 I7

18 19 20 1 21 22 23 24 25 26 27 28 29 1 30 31 32 I 33 34 35

CONI PI,

PARITY ERROR
INTERRUPT
ENABLED

POWER PARITY I INTERRUPT IN PROGRESS ON LEVELS-
FAILURE ERROR

1121314151617

18 19 20 21 22 23'24 25 26127

Memory Management APR 000

DATA0 APR, 70014

T PI
SYSTEM LEVELS ON (ACTIVE)
ON

1 12 13 14 15 16 17

28 29 1 30 31 32 1 33 34 35

-

MR-0749

C-18 Internal Device Bit Assignments

.-

Appendix D

Timing

This appendix contains tables and charts for determining the time taken by
instructions in PDP-10 processors. But some advice is in order before the
reader turns to the timing information. It is quite likely that inspecting
tables and charts for the fastest instructions takes more time than is saved
using them. Moreover there are other considerations of far greater import
to good programming than speed. The primary objective should be to gen-
erate code that is correct, clear and concise. Only after producing code
having these qualities should the programmer concern himself with the
timing; and even then there are general principles whose employment is
considerably more valuable than searching through charts and tables.

There are two levels at which time enters into the running of pro-
grams: the execution of the code itself, and the service the program requires
of the Monitor. The latter is principally a function of the organization of the
program and is discussed in some detail in the final paragraphs of 62.19. In
terms of writing fast code, the most important single factor is to pick a fast
algorithm. Here are some guidelines.

Loops are slow.

Always try to use one big loop instead of many small ones,

Put loops in subroutines, rather than subroutine calls in loops.

Set up data structures to minimize searching; instead index directly into
tables. If direct indexing is not feasible, divide tables into sublists wher-
ever possible.

Avoid testing inside loops for conditions that are constant throughout the
loop.

Avoid recomputing constants.

Use pointers rather than moving blocks of data.

D-l

UUOs are slow. If an extra ten instructions will save you from doing a
UUO half the time, use them.

10 is very slow. Keep information in memory as much as possible.
When it is not possible, move data to disk, but always keep in memory that
part most likely to be needed next. In any event always keep track of what
information is where; nothing wastes time more than bringing in the same
data twice. It is also a good idea to keep track of what is in your buffers if
there is any chance you will have to back up.

After finding the best procedure for doing a particular job, try to mini-
mize the number of instructions, and following that the number of memory
references. These two are obviously related, as every instruction requires at
least the memory reference to fetch it. Generally speaking the fewer in-
structions, the faster the code will go; and there is the added benefit of
fewer places for coding errors. But such rules should never be followed
blindly, as there are various tradeoffs that must be taken into considera-
tion. It is seldom useful to decrease the number of instructions or references
by lo%, only to double the storage requirement in the process. For an
exposition of such tradeoffs, refer to the discussion of parity procedures
given in $2.15. And also keep in mind that an increase in storage space may
mean an increase in Monitor service.

The reason that minimizing the number of instructions and/or mem-
ory references tends to minimize time is that for most of the simpler
instructions - data handling, Boolean, test - memory access is the dom-
inant factor in instruction time: This is not true for those instructions that
contain extensive repetitive procedures, such as multiply and divide. A
single MUL may entail a dozen additions, but it requires no more memory
time than a single ADD. Substituting an MUL for two or three Boolean or
test instructions rarely saves time. However use of the cache can reduce
total memory access time by 90%. The programmer can help achieve such
reduction by using the same locations for temporary storage in different
programs, and by making multiple use of subroutines rather than repeat-
ing common code. A good rule of thumb for approximating program time is
to figure about a microsecond per memory reference, minus a suitable sav-
ing for cache use, and then add a factor for shift operations. The KLlO has a
shift matrix, so in it the shift, rotate and byte instructions require no itera-
tive shifting. But iterative shifting does occur in multiply, divide, JFFO,
unnormalizing one operand with respect to the other in floating add and
subtract, fixing and floating a number, and normalizing a floating point
result.

After coding using the above guidelines and suggestions, run SNOOPY
and TATTLE to determine where the program is really spending its time
and whether further local optimization is worthwhile. It usually is not, but
where it is, use the information given in the following pages. A note of
caution, however, concerning that information. No instruction times are
measured. The timing charts are constructed from delay times and pub-
lished times for various circuits used in the hardware. Specific instruction
times listed in tables and elsewhere are calculated from the timing charts.
There are therefore manifest sources of inaccuracy in the information with-

D-2 Timing

out considering the obvious fact that no two machines ever run exactly
alike. Be especially leery of attaching any significance to the last digit.

Do not assume that the fastest algorithm on one type of PDP-10 proc-
essor will be the fastest on another, or that instruction times given for one
processor can be regarded as a relative indication of the times for another.
Each new processor is faster than its predecessors, but different instruc-
tions are speeded up different amounts. Since the shorter instructions are
dependent almost entirely on memory cycle time, they go faster only with a
faster memory but are affected greatly by use of a cache. Among the slower
instructions, it is the most frequently used that get speeded up the most in
a new machine. One thing a programmer can safely assume is that with
each new machine, equivalent instructions will tend toward taking the
same amount of time. In all processors the fastest jump is JRST; the fastest
no-op and absolute skip are as follows.

No-op Absolute Skip

KLlO TRN TRNA
KS10 TRN TRNA
KIlO JFCL TRNA
KAlO JFCL CAIA

Timing D-3

-

D-4 Timing

KIlO Instruction Times

The table on the next two pages lists the processor execution time in micro-
seconds for each instruction beginning with its address calculation. The
times do not include the instruction fetch (89 microsecond), as this is over-
lapped with the preceding instruction execution; in each case the processor
time needed to complete the instruction fetch depends upon the extent of
the overlap, a factor that varies from one instruction to another. The time
listed is that required for direct addressing without indexing (i.e. with no
effective address calculation), and assuming E addresses an ME10 or MFlO
core location (1 pus cycle), except in DFN and UFA, which are most fre-
quently used with E equal to A+l. It is further assumed that no conflicts
develop in memory access - in other words there are a number of in-
terleaved memories, and data blocks are kept in separate memories from
instructions, so the processor need never wait for operand access while a
given memory completes a cycle from an instruction fetch.

To arrive at more complete execution times for various circumstances,
make the following adjustments to the figures given in the table. For index-
ing add 0.06; for indirect addressing add 1.02 for each address cycle without
indexing, 1.08 for each with indexing. If the final address cycle includes
indexing, add 0.12 to JRA, POP and POPJ, and add 0.11 to any instruction
that does not fetch a memory operand. If memory operand storage is in fast
memory, subtract 0.08 unless there is also storage in a second accumulator,
in which case add 0.03. For more esoteric considerations: add 1.11 for each
page refill cycle; add 0.09 to every page check in an instruction executed by
a PXCT, from the console, or in an interrupt; and add 0.20 per read access if
the machine is running with the parity stop switch on. The time given for
MAP assumes no page failure.

Following the table is a chart (with intervals in nanoseconds) that can
be used for calculating the instruction time in almost any circumstances,
with any memory, etc. However neither table nor chart includes any infor-
mation about interrupts, page failures, bus conflicts between interrupts
and IO instructions, or other special situations.

Memory access by the processor is divided into three parts: page check,
request setup, and the actual access cycle over the memory bus. In an
instruction fetch, the first two of these can be overlapped with operand
storage, but not the third. The effect of this on instruction fetch time is as
follows. If an instruction does not store a memory operand (either because it
has no operand or stores the result in an accumulator), probably the next
instruction fetch will be overlapped entirely: hence the second instruction
will be ready by the time the first is done. If an instruction stores a memory
operand, there is no overlap on the bus, but most likely the page check and
request setup will already have been performed (these show up as the 175
preceding each read access in the chart). After the write access is complete
an instruction has 147 nanoseconds to go, during which period the read
access for the next instruction can begin. Finally some instructions put off
triggering the next instruction fetch until near the very end, but even in
the worst case (BLT) there is a minimum overlap of 87 nanoseconds, which
is enough for the page check (81).

Timing D-5

KI 10 INSTRUCTION TIMES

Full Words Half Words

EXCH

BLT

+ per word

Memory + memory

AC + memory

Memory + AC

IBP

LDB

DPB

ILDB

IDPB

Byte

1.90

2.87-6.72

3.12-4.99

3.54-1.39

3.80-5.67

Program Control

JSR .95

JSP .45

JRST .34

JEN .34

PORTAL .34

JRSTF .45

JSA 1.06

JRA 1.59

JFCL .34

JFFO .79+2.66

XCT .34

LUUO 1.06

MUUO 2.83

MAP .60

1.61 MOVE MOVS 1.26

MOVE1 MOVSI .45

1.35 MOVEM MOVSM 1.06

MOVES MOVSS 1.61

1.59 MOVN MOVM 1.32

1 .?l MOVNI MOVMI .51

1.42 MOVNM MOVMM 1 .13

MOVNS MOVMS 1.67

Pushdown

PUSH 1.94

POP 2.16

PUSHJ 1.12

POPJ 1.43

TLN .45

TLNE .62

TLNA .56

TLNN .62

TLZ .56

TLZE .73

TLZA .67

TLZN .73

TLC .56

TLCE .73

TLCA .67

TLCN .73

TLO .67

TLOE .73

TLOA .67

TLON .73

Basic 1.26

Immediate .45

Memory, no action 1 .I2

Memory, some actlon 1.06

Self 1.61

Arithmetic Test In-out

AOBJP AOBJN .57 BLKO 1.5 1 + DATA0

CAI

CAM

JUMP

AOJ SOJ

SKIP

AOS SOS

TRN

TRNE

TRNA

TRNN

TRZ

TRZE

TRZA

TRZN

TRC

TRCE

TRCA

TRCN

TRO

TROE

TROA

TRON

.62 BLKI 1.51 + DATA1

1.43 Fast

.56 DATA0 3.13

.62 DATA1 CON1 2.05

1.37 CON0 2.32

1.78 CONS0 CONSZ 1.55

Logical Test

.34 TDN

.5 1 TDNE

.45 TDNA

.5 1 TDNN

.45 TDZ

.62 TDZE

.56 TDZA

.62 TDZN

.45 TDC

.62 TDCE

.56 TDCA

.62 TDCN

.56 TDO

.62 TDOE

.56 TDOA

.62 TDON

1.15 TSN

1.32 TSNE

1.26 TSNA

1.32 TSNN

1.26 TSZ

1.43 TSZE

1.37 TSZA

I .43 TSZN

1.26 TSC

1.43 TSCE

1.37 TSCA

.43 TSCN

.32 TSO

.43 TSOE

.31 TSOA

.43 TSON

Slow -

4.12

3.37

3.31

2.87

1.26 -
1.43

1.37

1.43

1.37

1.54

I .48

I .54

1.37 _

1.54

1.48

.54

.48

.54

.48

.54

D-6 Timing

Basic

Immediate

Memory, Both

ADD SUB

ADD1 SUB1

ADDM SUBM

ADDB SUBB

FAD 2.45-6.20

FADL 2.79-6.54

FADM FADB 2.80-6.55

FADR 2.45-6.26

FADRI 1.75-5.56

FADRM FADRB 2.80-6.6 1

DFN 1.50

UFA 1.9 l-3.86

FSC 1.02, 1.19

FIX FIXR 1.72-3.3 1

FLTR 2.1 O-6.07

DFAD 2.59-7.00

DFSB 2.59-7.19

Single Precision Floating Point Arithmetic

FSB 2.62-6.37

FSBL 2.96-6.7 1

FSBM FSBB 2.97-6.73

FSBR 2.62-6.43

FSBRI 1.98-5.79

FSBRM FSBRB 2.98-6.79

FDV 7.12-7.75

FDVL 7.77-8.52

FDVM FDVB 7.47-8.10

FDVR 7.49-7.95

FDVRI 6.79-7.25

FDVRM FDVRB 7.84-8.30

Double Precision Floating Point Arithmetic

DFMP 6.89- 10.59

DFDV 14.88-15.24

No Divide 2.62, 2.70

Boolean Shift-rotate

AND ANDCA ANDCM Left 1.14-5.10
SETZ SET0 ANDCB SETM SETCM IOR ORCA

SETA SETCA XOR EQV ORCM ORCB
Right 1.19-3.17

.4.5 1.26 1.37
Left long 1.14-9.06

Right long 1.19-5.15
.45 .45 .56

.95 1.61 1.72

Fixed Point Arithmetic

1.32 MUL 3.63-7.14 DIV 8.10-8.51

.51 MULI 2.82-6.33 DIVI 7.29-7.70

1.67 MULM 3.76-7.27 DIVM 8.73-8.64 No Divide

1.67 MULB 3.87-7.38 DIVB 8.34-8.75 Immediate .90- 1.08

IMUL 3.47-6.38 IDIV 8.16-8.45 Other 1.71-1.89

IMULI 2.66-5.57 IDIVI 7.35-7.64

IMULM 3.87-6.73 IDIVM 8.29-8.58

IMULB 3.82-6.73 IDIVB 8.40-8.69

FMP 3.65-4.83

FMPL 3.99-5.17

FMPM FMPB 4.00-5.18

FMPR 3.65-4.89

FMPRI 2.95-3.59

FMPRM FMPRB 4.00-5.24

No Divide

FDVL 2.1 1, 2.29

FDVRI 1.24, 1.30

Other I .94,2.00

DMOVE 1.73

DMOVEM 1.85

DM OVN 2.07, 2.13

DMOVNM 2.31

Timing D-7

,

Kilo INSTRUCTION TIMING PART I I 1 i t

D-8 Timing

-

I r

Timing D-9

KllO INSTRUCTION TIMING PART II

D-10 Timing

KAlO Instruction Times

Instruction times for the KAlO can be calculated from the chart on the next
two pages (intervals are in microseconds). Times derived from this chart
are given with the instruction descriptions in the original PDP-I0 System
Reference Manual, which should be available to you if your system is based
on a KAlO. For more exact times than those given in that manual, add 0.06
to the listed time, plus an additional 0.03 for each memory operand read
access, and another 0.03 if the instruction does not write a result in mem-
ory.

Timing D-11

DATA FETCH

KAlO

INSTRUCTION

FLOW CHART

TIMING

INSTRUCTIONSTHAT USE READ,MODIFY

All Boolean I” Memory dnd Both mode except SETZ, SETA, SETCA, SET0

ADDM, ADDB, SUBM, SUBB

HRRM, HRLM, HLRM, HLLM dnd all half words in Self mode

MOVES, MOVNS, MOVMS. MOVSS

ILDB. IDPB if~rst time only1

IBP, BLKI, BLKO, DFN. EXCH

AOS SOS in all modes

D-12 Timing

INSTRUCTION EXECUTION
-A__ -\

DATA STORE

1
Buuleon ,excepr ANOCA ANOCB OHCA, ORCBI

Half Wordr,excepr HtR HLRI HRL. HRLI) MOVE

MOVS. EXCH. JFCL JRST JSP. XCT. UUO

ANOCA,ANOCB.ORCA.ORCB HLR,HLRl

HRL. HRLI. JSR, JSA JRA. Test class

MOVN. MOVM. ADO SUB. AOBJP, AO5JN

CAM, CAI. SKIP, JUMP, AOJ. AOS. SOJ SOS

PUSH, PUSHJ POP, POPJ. OFN

JFFO

BLT

CON0 CON, CONSO. CONSL. OATAO DATA, ii Thm Wdll llll,lI 4 50 hdS pdsed IllICe IdSI here

CON0 CONI. OATAO. DATAI +26Y

CONSO. CONS2 1290

BLKO. ELKI bV Tiw I,,,,, ,n,o OATAO DATA, md qu ,u Cl

Timing D-13

Appendix E

Processor Compatibility

The table beginning on the next page identifies the user programming
differences among the various central processors. The reader is forewarned
not to assume that he can program a new processor simply by glancing
through this table. Simpler differences, principally some of those associated
with individual user instructions, are explained adequately in the table
entries. But in more complex cases, the table entries serve only to identify
the areas of difference and refer the reader to the real substance in Chapter
2. In particular, all programmers, regardless of previous experience with
other processors, should read Chapter 1.

The table is limited to user programming differences. Depending on the
area, system differences vary from minor to extreme, and every system
programmer must read the system operations chapter for his processor.
Operating differences are so extensive, that upon approaching a new proc-
essor an operator must read the complete operating information given for it
in Appendix F or the appropriate operator’s guide.

Complete conditions that affect the program flags are given in 42.9 and
are not listed here, although the table does indicate any differences from
one processor to another in which flags are present, how they are read, and
how a particular flag is affected by a given instruction. The entry “Same as
X’ means the situation for that processor is the same as indicated in the
column headed X. Column B, Extended KLlO Section 0, applies also to the
KS10 except for minor differences indicated in the individual entries or in
notes at the end of the table.

E-l

A
Extended KLIO

Nonzero Sections

B
Extended KLlO

Section 0

C
Single-section

KLlO

D E

KIlO KAlO

Address word
(I 1.5)

ADJBP

ADJSP

AOBJN, AOBJP

Global or local

Yes

Yes

The two halves of AC
are incremented
independently

Local only Same as B

Yes

Yes

Same as A

Same as B Same as B

Yes

Yes

Same as A

No

No

Same as A

No

AC is incremented by
adding IWWtJI

BLKI, BLKO
(also see IO
insrructions)

The two halves of
pointer are
incremented
independently

the Same as A
KSltJ: not available

Same as A Same as A The pointer is
incremented by adding
lWJtnJl

BLT At the end AC left
and right contain
addresses one greater
than final source and
destination locations,
except funny addresses
in attempted reverse
BLT

Byte pointer
(I 2.11)

One word or two; as
of microcode 271, one-
word pointer local or
global

Carry flags Set up by DMOVN
and DMOVNM

Same as A
KSIO: same as A
except no funny
stuff in attempted
reverse BLT

Same as A At the end AC is
indeterminate unless
interrupt and pager
both off. in which
case it is unaffected

Same as D except pager
condition not applicable

One word local only Same as B Same as B One word only; address
overflow czrries into
index field

Same as A Same as A Not affected by
DMOVN or
DMOVNM

Not applicable

No

Yes

Not available

CMPSx Yes

Concealed mode Yes

CVTBDO. CVTBDT M and N can be
affected by an aborted
instruction

Yes

Yes

Same as A
KSIO: an aborted
instruction cannot
affect M and N

Yes

Yes

Yes

Yes

Same as A

No

No

Not available

‘c
- ,’

CVTDBO. CVTDBT Yes

DADD, DSUB.
DMUL, DDIV

DFAD. DFSB

Yes

Test for zero inspects
entire fraction

No

No

No

No

Yes

Yes

Same as A Same as A Test for zero inspects
only high order 70
bits of fraction

Neither normalizes
nor rounds

DFAD zero test; at
most one
normalization shift
(except skips entire
high order word if
zero)

Not available

DFDV Normalizes and rounds Same as A Same as A

Same as A

Not available

Not available DFMP DFAD zero test; does
ordinary normalization

Same as A

DFN See software double precision floating poinr

DGFLTR Yes as of microcode
271

Yes

Same as A
KSIO: no

Yes

No

Yes

No No

No DMOVE ,
DMOVEM

Yes

June 1982 E-2 Processor Compatibility

A
Extended KLlO

Nonxero Sections

B
Extended KLIO

Section 0

C
Singbection

KLlO

D E

KIlO KAlO

Overflow if negate -2”’ Same as A Same as A No overflow test Not available DMOVN,
DMOVNM

(5 2.1)

Double precision
arithmetic

EDIT

EXTEND

FAD, FSB

Fixed and floating Same as A Same as A Floating only No

No

No

Range 54-64

No

No

Same as D

Yes Yes Yes

Yes Yes Yes

Zero substitution Same as A Same as A
problem with exponent
difference in range
54-72

FADL, FSBL

FDV

See FAD and software double precision floating point

Negative quotient is
ones complement,
except twos
complement when
remainder is zero

Same as A Same as A Negative quotient is
always twos
complement

Same as D

See FDV and software double precision flooring point FDVL

FIX, FIXR

Flag-PC doubleword

Yes Yes

Yes Yes

Saved alone - never Saved alone or in
combined with PC in PC word
single word KSIO: bits 7 and 8

not used

With flags and JFCL Same as A

Yes Yes

See software double precision floating poinr

Yes

No

Saved only in PC
word

Same as A

Yes

Yes

Same as A

No

Same as A

Yes

No Divide on
-2l‘+ * 1

Yes

No

Same as C

No

No

Same as D but bits 7-10
not used

Same as A

Yes

Also in processor
conditions

No

Floating Overflow
(I 2.9

FLTR

FMPL

‘Yes

Same as A

No

Same as D

Front end

FSC

Yes

No problem Extreme overflows
not detected properly

No G format floating
point

HALT

Yes as of microcode
271

Illegal; microcode
enters halt loop

Same as A
KSIO: no

Illegal unless User In-out
set; MA lights display
address

Same as A
KSIO: stores halt
code and status
block before
entering halt loop

Yes

Illegal; AR lights
display address one
greater than that of
instruction that
caused halt

Yes HLLI

IBP, IDBP, ILDB

IDIV

Yes = XHLLI

See byte pointer

No Divide on -2’” +
-I as of microcode
271, earlier on -i?+
?I

Same as C Same as A
KSl0: -2”+ -l=
-2l’ with no error
indication

Same as C

Processor Compatibility E-3 June 1982

A
Extended KLlO

Nonxero Sections

B
Extended KLlO

Section 0

C
SingkectIon

KLIO

D

KIlO

HALT, JRST 10,
JEN

E

KAlO

*XBLT, HALT;
XJEN, XPCW,
JEN, JRSTIO,
SFM, MAP unless
User In-out set

HALT, JRST 10,
JEN unless User In-out
set

JRSTF, HALT,
JEN: XJEN, XPCW,
JRST 10, MAP
unless User In-out set

HALT, XJRSTF,
XJEN, XPCW,
SFM;
JRSTlO, JEN,
MAP
unless User In-out
set

Same as B Same as B

Illegal basic
instructions

(also see IO

Same as B

Same as B

Same as B

Indirect word
(81.6)

Index

Global or local Local only

Local only (bots
b-17 ignored)

Same as B Global if bit 0 is 0 and
bits 6-17 nonzero;
otherwise local

Legal if device code 2
740 or User In-out set

Illegal

IO instructions Same as A
KSlO: same as E

Legal if User In-out
set

Same as A

Same as A Same as A

Same as A

Legal only if User In-out
set

Same as B Same as B JEN

Bits !%12 decoded for
16 functions (see I2.Y)

Same as A Four functions
selected by 1s in bits
9-12
(see S2.Y)

Same as B

Same as B

Same as D JRST
(see illegal
instructions)

Same as B

Same as B

JRSTF

JSP, JSR

Illegal

Saves extended PC in
bits 6-35

Legal

Saves flags and in-
section PC in PC
word

Same as A

Same as B

Same as B

JSYS MUUO used by
TOP!+20

Same as A Unassigned code Same as D

Long mode See software double precision floating point

Stores data in LUUO
block and jumps to
location given by block

Stores LUUO in
virtual location 40
and executes
location 41

Same as B Same as B Same as B LUUO
($2.16)

Legal only if User In-
out set

TOPS-20, but can be
TOPS-IO as of
microcode 271

Yes

Same as A Same as A Legal everywhere

TOPS-IO

Not available

Same as D

MAP

Monitor Same as A
KSIO: same as C

TOPS-10 or
TOPS-20

Yes No

Same as A

No MOVSLJ, MOVSO.
MOVSRJ, MOVST

MUL

Yes

AC supplies multiplier Same as A Same as A AC supplies multiplicand.
which if -2” is treated as
though it were + 2”

tktU-051. 055-100. Action
same as LUUO except
uses unrelocated JO-t1
(140-141 if trap offset)

040-05 I. 055-077.
Stores data in
424325 of user
process table: sets up
flags and jumps as
specified by PC-word
list

MUUO
(P 2.16)

104. Stores data in 040-05 I ~ 055-077.
424-427 of user 104. Same action as
process table; sets up A
previous context flags. KSIO action:
clears others, jumps as TOPS-20 same as
specified by PC list A: TOPS-IO same

as C

04tJ-05 I. 055477:
also IW with
TOPS-20. Stores
data in 425427 of
user process table
except 424-426 if
TOPS-IO: sets up
flags and jumps as
specified by PC-
word list

E-4 Processor Compatibility June 1982

A
Extended KLlO

Nonxero Sections

B
Extended KLlO

Section 0

c
Sinslc_section

KLIO

D

KIlO

Same as A

Same as A

Yes

Same as C

Same as B

Same as A

Yes

Same as B

No

Yes

No

Yes

Yes

Same as B

No

Yes

Same as A

No

E

K.410
/*-

Overflow Handled by trapping:
arithmetic sets
Overtlow and Trap 1;
stack sets Trap 2

With flags and JFCL;
sets Trap 1

Same as A Same as A Handled by interrupt:
arithmetic sets Overflow;
stack sets Pushdown
Overflow

Also in processor
conditions; causes
interrupt

No

Same as C - but flag bits
7-10 not used

Overflow flag Same as A Same as A

OverfIow trapping

PC word

Yes

Replaced by extended
PC without flags (JSP,
JSR, PUSHJ) or flag-
PC doubleword
(MUUO)

Action depends on
whether pointer global
or local

Clears Public when
fetched from non-
public area, so is valid
entry

Yes

Yes

‘With JSP. JSR,
PUSHJ. JRSTF
(MUUO uses
doubleword)

Yes

With JSP, JSR.
PUSHJ, MUUO,
JRSTF

POP, POPJ
(see stack pointer
and 62.10)

PORTAL
(JRST 1,)

Local action only Same as B Same as B

Same as A
KSlO: = JRST 0.

Same as A Enter user mode

Public

PUSH, PUSHJ
(see stack pointer
and 92.10)

Pushdown Overflow

SETMI

SFM

Yes
KSlO: no

Local action only

Yes No flag - user always
public

Same as B Action depends on
whether pointer global
or local

No (see stack pointer)

= XMOVEI

Yes

Same as B

Yes

Yes

No

No

Yes

Illegal unless User
In-out set
KSlO: illegal

No

Same as A

No

Yes

Illegal

Small User

Software double
precision
floating point

Stack pointer
L (5 2.10)

No

Only if specially
implemented in
microcode

No

Same as A

No

Yes

Global if bit 0 is 0 and
bits 617 nonzero;
otherwise local. in
which case the two
halves are incremented
or decremented
independently, and
overflow sets Trap 2

Yes

Yes

Local only Same as B Local only, but
incremented or
decremented by adding or
subtracting 1ooooO1. and
overflow sets Pushdown
Overflow

String instructions

Trap flags

Trapping

No

No

Only UUO

Yes

Yes

Same as A

Yes

Yes

Same as A Overflow, page
failures, UUO

UFA

UJEN

See FAD and software double precision floating point

No No No Yes

Processor Compatibility E-5 June 1982

A
Extended KL 10

Nonzero Sections

B
Extended KLlO

Section 0

C
Singk5section

KLlO

D E

KIIO KAlO

052-054, lUfJ-107.
114-l 17. 123, 247

052-054, 101-127.
Execute like MUUOs but
use executive locations
60-61 (l&161 if trap
offset). 247 and 257 are
not regarded as
unassigned and execute as
no-ops unless
implemented by special
hardware

Same as B except:
G floating and
extended code 020
unassigned; in
TOPS-IO 104
unassigned

Unassigned codes As of microcode 271:
052-054, 100, 101,
247; extended codes
032-777; JRST
functions 3. 11, 13.
15-17; 001-037 in
executive mode; 130.
131, 141, 151, 161. 171
unless software double
precision floating point
implemented in
microcode. With
earlier microcode also
102, 103, 106, 107 and
extended codes
021-031 (G format
floating point)

All assigned codes
implemented in
hardware except G
format fix instructions
(when present)
simulated by Monitor

Same as A except
001-037 are LUUOs
in any mode
KSIO: G format and
software double
precision floating
point not
implemented: in
TOPS-IO 104
unassigned

Same as C Turning on FP TRP
switch causes floating
point and byte codes
13&177 to act like
unassigned codes

Unimplemented
operations

Same as A
KSlO: all assigned
codes implemented
in hardware

All assigned codes
implemented in
hardware

Allows IO
instructions with
device codes under
740 to be performed
in user mode. With
flags

Allows all IO instructions
and otherwise illegal basic
instructions to be
performed in user mode.
With flags and processor
conditions

User In-out
Allows 10 instructions
with device codes
under 740 and certain
otherwise illegal basic
instructions to be
performed in user
mode. With flags

XBLT Yes

XCT No problem

Same as A
KSlO: applies to all
IO instructions (no
device codes)

Same as A

No

Same as A

No No

A private XCT Not applicable
cannot execute an
instruction in a public
area

Same as B Same as B

Illegal

Same as A

XHLLI

XJEN

Same as B

Illegal No

Yes

Illegal unless User In-
out set

Yes

Yes

Illegal unless User In-
out set

= HLLI

Same as A
KS 10: illegal

Yes

= SETMI

Same as A
KSlO: illegal

No

Illegal

Same as B

Illegal

No

Same as B

No

No

Same as B

No

XJRSTF

XMOVEI

XPCW

KS10 Notes

For console only (microprocessor). 1.

2.

3.

HALT, XJEN, XPCW, SFM: JEN, JRSTIO. MAP and all system instructions unless User In-out set.

TOPS-IO MUUO: flag bits 7 and 8 not used.

Processor Compatibility June 1982

PC word

POP, POPJ
(see stack pointer
and section 2.10)

PORTAL
(JRST 1,)

Public

PUSH, PUSHJ
(see stack pointer
and section 2.10)

Pushdown Overflow

SETMI

SFM

Small User

Software double
precision
floating point

A
Extended KLlO

Nonzero Sections

Replaced by extended
PC without flags
(JSP, JSR, PUSHJ) or
flag-PC doubleword
(MUUO)

Action depends on
whether pointer
global or local

Clears Public when
fetched from non-
public area, so is
valid entry

Yes

Action depends on
whether pointer
global or local

No (see stack
pointer)

= XMOVEI

Yes

No

Only if specially
implemented in
microcode

B C D
Extended KLlO Single-section

Section 0 KLIO KIlO

3 With JSP, JSR, PUSHJ, With JSP, JSR, PUSHJ, Same as C
JRSTF (MUUO uses MUUO, JRSTF
doubleword)

Local action only

Same as A
KSlO: = JRST 0.

Yes
KSlO: no

Local action only

No

Yes

Illegal unless User
Inout set
KS 10: illegal

No

Same as A

Same as B

Same as A

Yes

Same as B

No

Yes

Illegal

No

Same as A

Same as B

Same as A

Yes

Same as B

No

Yes

No

Yes

Yes

E

KAlO

Same as C - but flag
bits 7 -10 not used

Same as B

Enter user mode

No flag - user
always public

Same as B

Yes

Yes

No

No

Yes

Stack pointer
(section 2. IO)

String instructions

Trap flags

Trapping

UFA

UJEN

Unassigned codes

Unimplemented
operations

A
Extended KLlO

Nonzero Sections

Global if bit 0 is 0
and bits 6- 17 non-
zero; otherwise
local, in which case
the two halves are
incremented or
decremented inde-
pendently, and over-
flow sets Trap 2

B
Extended KLlO

Section 0

Local only

Yes Yes

Yes Yes

Overflow, page Same as A
failures, UUO

See FAD and software double precision floating point

No No

052-054,100-103,
106,107,247;
extended codes 021-
777; JRST functions
3,11,13,15-17;
001-037 in executive
mode; 130,131,141,
151,161,171 unless
software double pre-
cision floating point
implemented in
microcode

Same as A except
001-037 are LUUOs
in any mode
KSlO: software
double precision
floating point not
implemented; in
TOPS-l 0 104
unassigned

All assigned codes
implemented in
hardware

Same as A

C
Single-section

KLlO

Same as B

Yes

Yes

Same as A

No

Same as B except:
extended code 020
unassigned; in
TOPS-10 104
unassigned

Same as A

D

KIlO

Same as B

E

KAlO

Local only, but
incremented or
decremented by
adding or subtrac-
ting 100000 1, and
overflow sets
Pushdown Overflow

No

Yes

Same as A

No

No

Only UUO

No

052-054, lOO-
107,114-l 17, 123,
247

Yes

052-054,101-127.
Execute like MUUOs
but use executive
locations 60-61
(160-161 if trap
offset). 247 and 257
are not regarded as
unassigned and
execute as no-ops
unless implemented
by special hardware

Same as A Turning on FP TRP
switch causes float-
ing point and byte
codes 130-177 to
act like unassigned
codes

User Inout

XBLT Yes

XCT No problem

XHLLI

XJEN

XJRSTF

Xh4OVEI

XPCW

A
Extended KLlO

Nonzero Sections

Allows IO instruc-
tions with device
codes under 740 and
certain otherwise
illegal basic instruc-
tions to be performed
in user mode. With
flags

Yes

Illegal unless
User In-out set

Yes

Yes

Illegal unless
User In-out set

B
Extended KLI 0

Section 0

C
Single-section

KLlO

Same as A
KSlO: applies to all
IO instructions (no
device codes)

Same as A

Illegal

Same as A

No

Same as A

= HLLI

Same as A
KS1 0: illegal

Yes

= SETMI

Same as A
KS1 0: illegal

Same as B

Illegal

Illegal

Same as B

Illegal

KS1 0 Notes

D

KIIO

Allows IO instruc-
tions with device
codes under 740 to
be performed in
user mode. With
flags

No

A private XCT cannot
execute an instruction
in a public area

Same as B

No

No

Same as B

No

1. For console only (microprocessor).

2. HALT, XJEN, XPCW, SFM; JEN, JRSTlO, MAP and all system instructions unless User In-out set.

3. TOPS-10 hlUU0; flag bits 7 and 8 not used.

E

KAlO

Allows all IO
instructions and
otherwise illegal
basic instructions
to be performed in
user mode. With
flags and processor
conditions

No

Not applicable

Same as B

No

No

Same as B

No

Appendix F

Processor Operation

The two sections of this appendix explain the switches and indicators used in

normal operation and program debugging on the KIlO and KAlO processors.

Mounted on the front of the right bay of each processor are console operator and

maintenance panels. Indicator panels are at the tops of the processor bays. The real

time clock is included in both processor discussions.

More recent processors have no operator panels and no controls beyond per-

haps a simple power switch. The KLlO is operated from the master front end

PDP-11; the KS10 is operated via a terminal that communicates with a micropro-

cessor in the console module. For information on how to bootstrap (including load-

ing the microcode) and operate these systems, refer to the TOPS-10 Operator’s
Guide or TOPS-20 Operator’s Guide, whichever is appropriate.

Operating information for memories is given in Appendix G. Note that the

KS10 memory is built in and is not operable in the usual sense; program informa-

tion about it is included in Chapter 4. For information on the running of hardware

diagnostics and the use of diagnostic functions or switches and indicators for hard-

ware troubleshooting, refer to the appropriate maintenance manual.

Cleaning the Equipment

The exterior of all equipment in the system should be cleaned at least weekly.

Vacuum all outside surfaces including cabinet tops and, where possible, under-

neath the cabinets. Pay special attention to air intake gratings.

F-l

CAUTION

When cleaning, be careful not to change the position of any

switches as this could easily cause a software crash. Also be very

careful not to jar any disk or drum equipment as serious head prob-

lems may result.

It is alright to use spray cleaner on exposed vertical surfaces,

but do not use it around switches, near intake gratings, or near any

other openings, because the “guck” can cause severe problems if it

gets inside the equipment. The “alright” in this caution applies to

the sheet metal. Whether the carcinogens that come out of aerosol

cans are alright for your lungs is up to you to decide. It has never

been shown that the presence or absence of fingermarks or other

stains has any effect whatever on the operation of the system. And

anyway, it is probably much healthier to get a little exercise using

an ordinary cleaner.

Interior cleaning is necessary only for certain items of peripheral equipment.

Specific instructions for such cleaning are given in the various operator’s guides

and maintenance manuals.

F-2 Processor Operation

F.l KllO Operation

.-
Most of the controls and indicators used for normal operation of the processor

and for program debugging are located on the console operator panel, shown

on the next page with the maintenance panel above it. In the upper half of the

operator panel are four rows of indicators, and below them are three rows of

two-position keys and switches. Physically both are pushbuttons, but the keys

are momentary contact whereas the switches are alternate action. Relative to

the internal logic, the switches are actually flip-flops that are controlled by

the buttons but which in many cases can also be “operated” by the program. A

switch is on or represents a 1 when it is illuminated. Buttons that actually

trigger operating sequences in the processor are the operating keys, which are

located in the right half of the bottom row. Operating switches are those that

supply control levels for governing various processor operations; these include

the buttons in the left half of the bottom row (except SINGLE PULSER), the

paging switches at the left end of the third row, and the buttons at the left in

the top two rows at the left end of the maintenance panel. The remaining

buttons are sense switches, groups that constitute switch registers, and vari-

ous other special keys and switches that supply information to the program or

to specific hardware functions, or perform special functions of various sorts

separate from the normal processor operating sequence.

The thirty-six numbered switches in the second row from the bottom on

the operator panel and the twenty-two numbered switches in the row above

them are the data and address switches, through which the operator can

supply words and addresses for the program and for use in conjunction with

the operating keys and switches. At the right end of each of these switch

registers is a pair of keys that clear or load all the switches in the register

together. The load button sets up the switches according to the contents of the

corresponding bits of the memory indicators (MI) in the fourth row. At the left

end of the maintenance panel are switches to select the device for readin mode

and a set of sense switches, which can be interrogated by the program.

The center section of the maintenance panel contains a voltmeter and

controls for margin checking, and the right section contains speed controls for

slowing down the program. Between these is a counter that registers the total

time processor power has been on (the counter reads hours if the line fre-

quency is 50 Hz, but at 60 Hz it counts six for every five hours). Below the

counter are four special buttons, two of which are locks that are used to

prevent inadvertent manipulation of the keys and switches while the proces-

sor is running: the console data lock disables the data and sense switches; the

console lock disables all other buttons except those that are mechanical,

which group comprises the four under the counter and the readin device

switches.

Power is supplied to the system by means of the switch at the right end in

the group under the counter. This switch is lit while power is on, but the

power light in the upper right corner of the operator panel is lit only when the

system is actually in operation or is ready for operation; after power turn-on

the light does not come on until power is stabilized in the correct range.

A panel indicator is worthless if
the bulb is burned out. Before
attempting to use the informa-
tion presented by the panels,
press the LAMP TEST button
below the counter on the main-
tenance panel; this turns on all

of the lamps so any that are
burned out can easily be
detected.

Processor Operation F-3

At the left of the margin check con-

trols are three red lights that indicate

an overtemperature condition some-

where in the processor logic, a tripped

circuit breaker, or a cooling assembly

door open. Whenever any of these

lights goes on the Power Failure flag

sets and power automatically shuts

down.

-

Indicators

When any indicator is lit the associ-

ated flipflop is 1 or the associated func-

tion is true. Some indicators display

useful information while the processor

is running, but many change too fre-

quently and can be discussed only in

terms of the information they display

when the processor is stopped. The pro-

gram can stop the processor only at the

completion of the HALT instruction;

the operator can stop it at the end of

every instruction, in certain memory

references, or following every clock

pulse (the last allows extremely slow

speed operation with the clock running

slowly or each clock pulse triggered in-

dividually by the operator).

_

-

Of the large groups of lights on

the operator panel, the right half of

the second row displays the contents of

PC, the third row displays the instruc-

tion being executed or just completed,

and the fourth row is the memory indi-

cators. The left third of the third row

displays IR; in an IO instruction the

left three instruction lights are on, the

remaining instruction lights and the

left accumulator light are the device

code, and the remaining accumulator

lights complete the instruction code.

The right half of the row displays the

virtual address on the address bus, and

the I and index lights reflect the states

of the corresponding bits of the mem-

ory buffer. Hence the right two thirds

of the row changes with every mem-

ory reference, and the I and

_

Processor Operation

index lights actually display the indirect bit and the index register address

only following an instruction fetch or an indirect reference in an effective

address calculation.

Above the memory indicators appear two pairs of words, PROGRAM

DATA and MEMORY DATA. If the triangular light beside the former pair is

on, the indicators display a word supplied by a DATA0 PI,; if any other data

is displayed the light beside MEMORY DATA is on instead. While the proces-

sor is running, the addresses used for memory reference are compared with

the contents of the address switches in a manner determined by the paging

switches and the User Address Compare Enable flag. Whenever the two ad-

dresses are equal and the comparison is enabled, the contents of the addressed

location are displayed in the memory indicators. However, once the program

loads the indicators, they can be changed only by the program until the opera-

tor turns on the MI program disable switch, executes a key function that

references memory, or presses the reset key [see belowl.

The four sets of seven lights at the left display the state of the priority

interrupt channels. The PI ACTIVE lights indicate which channels are on.

The IOB PI REQUEST lights indicate which channels are receiving request

signals over the in-out bus; the PI REQUEST lights indicate channels on

which the processor has accepted requests. Except in the case of a program-

initiated interrupt, which is shown in the PI GEN lights at the left end in the

bottom row on the indicator panel at the top of the console bay, a REQUEST

light can go on only if the corresponding ACTIVE light is on. The PI IN

PROGRESS lights indicate channels on which interrupts are currently being

held; the channel that is actually being serviced is the lowest-numbered one

whose light is on. When an IN PROGRESS light goes on, the corresponding

REQUEST goes off and cannot go on again until IN PROGRESS goes off when

the interrupt is dismissed. PI ON indicates the priority interrupt system is

active, so interrupts can be started (this corresponds to CON1 PI, bit 281. PI

OK 8 indicates that there is no interrupt being held and no channel waiting

for an interrupt; this signal is used by the real time clock to discount inter-

rupt time while timing user programs.

The four lights at the center of the top row indicate the processor mode.

One and only one of these lights can be on and they represent the combined

states of the User and Public flags. The rest of the top row contains the power

light and the following control indicators.

RUN

The processor is in normal operation with one instruction following another

(although the light remains on at a stop in a memory reference). When the

light goes off, the processor stops.

Opposite: Console Operator and
Maintenance Panels

Note: If a REQUEST light stays
on indefinitely with the associ-
ated IN PROGRESS light off
and PC is static, check the PI
CYC light on the indicator
panel at the top of the console
bay. If it is on, a faulty program
has hung up the processor.

Press RESET.

STOP MAN

The operator has stopped the processor by pressing STOP or RESET.

Processor Operation F-5

STOP PROG

The processor has been stopped by a HALT instruction. At the completion of

the instruction the address lights display the jump address (the location from

which the next instruction will be taken if the operator presses the continue

key), and the AR lights at the top of bay 2 display an address one greater than

that of the location containing the instruction that caused the halt.

STOP MEM

The processor has stopped at a memory reference. This can be due to satisfac-

tion of an address condition selected at the console, reference to a nonexistent

memory location, or detection of a parity error.

KEY MAINT

One of the following switches is on (this light is equivalent to CON1 APR, bit

8): FM MANUAL, MEM OVERLAP DIS, SINGLE PULSE, MARGIN

ENABLE, SINGLE INST, STOP PAR. Any one of these switches being on

implies that the processor is being operated for maintenance purposes, and is

not running at maximum speed.

KEY PG FAIL

A key function has caused a page failure. No page fail trap is executed in

response to a key-induced failure; if the processor is running, it continues the

program.

The remaining processor lights are on the indicator panels at the tops of

the bays [illustrated on next page]. The large groups of lights on the panel at

the top of bay 2 display the contents of the adder, the AR, BR and MQ regis-

ters, and the selected location in fast memory. The bottom row displays the

AR flags - FXU is Floating (exponent) Underflow, DCK is No Divide (divide

check). FXU HOLD is a nonprogram flag that plays a role in determining

underflow conditions. At the end is the flipflop that inhibits the clock.

The right halves of the top two rows of the bay 1 panel display the con-

tents of the AD and AR extensions. BYF6 in the top row is the First Part

Done flag; the TN lights at the right end of the fourth row are the trap flags

(TN 0 is Trap 2). The right half of the bottom row displays the physical

address for each memory reference and the type of memory request. At the

left are the lights for the associative memory. The AB 14-17 lights at the

center are always either off or reflect the states of address switches 14-17.

The lights in the top row of the panel on the console bay (bay 3) display

either the contents of the in-out bus, the paper tape reader buffer, MB, or the

information supplied by the last DATA0 PAG, as selected by the 4-position

switch in the right section of the maintenance panel. The large groups of

lights in the second row display the user and executive base registers; at the

left end are the Small User and User Address Compare Enable flags, and a

F-6 Processor Operation

Processor Operation F-7

The remaining lights on the
panels are for maintenance. If
the operator must use them, he
should consult the maintenance
manual and the flow charts.

CAUTION

READ IN does not clear the as-
sociative memory, whose con-
tents are unpredictable at power
turnon.

pair of lights that indicate which fast memory block is currently selected for

the user program. The bottom two rows include the indicators for reader,

punch and console terminal (see DECsystem-10 manual, Appendix H) and the

processor flags. Note that the TRAP ENABLE light at the center of the sec-

ond row is the Page Enable flag, which also enables overflow traps (DATA1

PAG, bit 22). PAGE LAST MUUO PUB at the very center of the panel is the

Disable Bypass flag. The User IOT flag is in the middle of the third row, and

COMP ADR BRK INH near the left end of the bottom row is Address Failure

Inhibit.

Operating Keys

The operating keys can be used whether RUN is on or off. If the processor is

running when a key is pressed, it simply pauses at an appropriate point in the

program to perform a key cycle to execute the function. These key functions

are effectively of three types. The first three keys on the left are for the

initiating functions, read in, start, and continue: these functions place the

processor in operation under conditions determined primarily by the function

itself. The next two keys are for the terminating functions, stop and reset: if

the processor is running, these functions stop it. The last five keys are for the

independent functions, execute, examine, examine next, deposit, and deposit

next. These functions have no inherent effect on processor operation: if the

processor is not running it simply performs a key cycle and stops; if it is

running, it pauses to perform a key cycle and continues the program. (How-

ever the data deposited or the instruction executed may have an effect.) More-

over the independent functions are affected by the setting of the paging

switches, which determine the address space in which the function is

performed.

The logic responds to the keys in two stages. When a key is pressed or

several are pressed simultaneously, the logic latches them. From among the

buttons latched, the processor then accepts the request for the function that

has priority; the priority order is the same as the order of the keys from left to

right on the panel except that reset has first priority. As soon as a function

request is accepted, the corresponding button lights up and remains lit until

the function is completed. If the processor is not already in operation, it per-

forms the accepted function immediately; otherwise it saves the function until

it can be performed. While any button is lit, however, no function request can

be accepted; in other words, although the processor will interrupt the program

to perform a key function, it will not interrupt one key function for another. It

will however do one key latch while a key is lit and accept the highest priority

latched function once the current function is done. Provision is also made in

the logic so that the RESET key can be used to stop the processor no matter

what.

READ IN

Clear all IO devices and all processor flags. Turn on RUN and EXEC MODE

KERNEL (trapping and paging will both be disabled as TRAP ENABLE at

the top of the console bay will be off). Execute DATA1 D,O where D is the

F-8 Processor Operation

device code specified by the readin device switches at the left end of the

maintenance panel. Then execute a series of BLKI D,O instructions until the

left half of location 0 reaches zero. After storing the last word in the block,

fetch that word as an instruction from the location in which it was stored as

The rightmost device switch is
for bit 9 of the instruction and
thus selects the least significant
octal digit (which is always 0 or
4) in the device code.

specified by PC. Since RUN has been set the processor begins normal opera-

tion at the location containing the last word. [For information on the data CAUTION _
format refer to Ki.11. Note that the key function lasts

Codes of readin devices are: PTR 104, DTC 320, DTC2 330, TMC 340,
throughout the processing of the
entire block. This means that

TMC2 350.

START

Turn on RUN and EXEC MODE KERNEL, and begin normal operation by

fetching the instruction at the location specified by address switches 18-35.

The memory subroutine for the instruction fetch loads the address into PC for

the program to continue. This function does not disturb the flags or the IO

equipment. ’

read in cannot be interrupted
for another key function. Hence
if it must be stopped (eg because
of a crumpled tape), press
RESET.

CONT (Continue)

If STOP MEM is on begin normal operation at the point at which the proces-

sor is stopped in a memory subroutine. Otherwise turn on RUN and begin

normal operation by fetching an instruction from the location specified by PC.

The memory restart is not a key
function in the sense defined
above. In other words, use of
CONT to continue at a memory
stop is not subject to the restric-
tions given above for use of the
operating keys.

STOP

Turn off RUN so the processor stops with STOP MAN on. At the stop PC

points to the location of the instruction that will be fetched if CONT is pressed

(this is the instruction that would have been done next had the processor not

stopped).

The processor may stop in the
middle of a two-part instruction,
but pressing CONT restarts the
instruction without repeating
any first-part actions that would

adversely affect the result.

RESET

Clear all IO devices, disable auto restart, high speed operation and margin

programming, clear the processor flags (lighting EXEC MODE KERNEL),

turn on the triangular light beside MEMORY DATA (turn off the light beside

PROGRAM DATA), turn off RUN and stop the processor. Do not clear the

associative memory.

If this function is not performed within 10 ms (eg because READ IN is

lit), the key triggers a panic reset that produces all of the standard reset

actions and also clears all but the mechanical console keys and switches.

XCT

Execute the contents of the data switches as an instruction without incre-

menting PC, even if a skip condition is satisfied in the instruction. If PAGING

USER is on and PAGING EXEC is off, execute the instruction in user virtual

address space; otherwise use executive address space. If the instruction is an

XCT or LUUO, the instruction called by it is also executed.

If STOP ever fails to stop the
processor, pressing this key will,
but not without destroying in-
formation. To save the processor
state, stop by pressing SINGLE
INST and SINGLE PULSE
simultaneously.

Note that an instruction exe-
cuted from the console can alter
the processor state like an in-
struction in the program: it can

Processor Operation F-9

halt the processor, can change
PC by jumping, alter the flags,
or even cause a non-existent
memory stop (but not a page fail
trap, even if it turns on the
KEY PG FAIL light).

NOTE

The remaining key functions all reference memory. They can therefore

light KEY PG FAIL and set such flags as Nonexistent Memory and

Parity Error, and they all turn on the triangular light beside MEMORY

DATA, turning off the light beside PROGRAM DATA. Performing one of

these functions with the ADDRESS STOP switch on stops the processor

in the memory subroutine (with STOP MEM on).

These functions use an address supplied by the address switches,

and the way that address is interpreted is determined by the paging

switches. If both paging switches are off, the function uses a 22-bit abso-

lute physical address supplied by address switches 14-35, and fast mem-

ory references are made to the block selected by the FM block switches

at the left end of the maintenance panel. If either paging switch is set,

the function uses a virtual address supplied by address switches 18-35

and the FM block switches have no effect (in other words the function

has access to one of the virtual address spaces defined for a normal

program). If PAGING EXEC is on, the function has access to executive

address space; if PAGING EXEC is off and PAGING USER is on, the

function has aCcess to user address space.

EXAMINE THIS

Display the contents of the location specified by the paging and address

switches in the memory indicators.

EXAMINE NEXT

Add 1 to the address displayed in the address switches, and display the con-

tents of the location then specified by the paging and address switches in

memory indicators.

the

DEPOSIT

Deposit the contents of the data switches in the location specified by the

paging and address switches, and display the word deposited in the memory

indicators.

DEPOSIT NEXT

Add 1 to the address displayed in the address switches, deposit the contents of

the data switches in the location then specified by the paging and address

switches, and display the word deposited in the memory indicators.

Besides defining the address space for the independent key functions, the

paging switches also perform this service for address comparison and for the

group of five switches just at the left of the operating keys. Whenever the

processor references memory or an accumulator, it may compare the virtual

address used with that specified by address switches 18-35 and may take

some action if the two are identical. There are a number of conditions that

Operating Switches

F-10 Processor Operation

affect the comparison. First, comparison can be made only for memory refer-

ences and accumulator write references - there is never a comparison for an

index register reference or an accumulator read reference. Given the proper

type of reference, the comparison must be enabled by the paging switches and

the User Address Compare Enable flag, as described below. In a reference of

the correct type with the comparison enabled, if the virtual address on the

address bus or the fast memory address is identical to the address in switches

18-35, the processor displays the contents of the addressed location or accu-

mulator in the memory indicators (unless the light beside PROGRAM DATA

is on).

Except in an AC reference, the same situation that causes the word dis-

play can also be made to stop the processor or produce an address failure,

depending upon the purpose of the reference as selected by the three address

condition switches. The logic that implements the address stop conditions

differs from that for the address break conditions in the data fetch case (the

break conditions are a subset of the stop conditions). However the differences

in the statement of the conditions appear quite large. This is because the

conditions are stated in terms of their consequences. And the consequences

differ considerably because an address failure occurs in the page check that is

done when a memory reference is requested, whereas an address stop occurs

after a memory reference is actually made.

The address conditions for a failure are explained in detail in 82.15.

Whenever there is a page check for a memory reference that satisfies both the

comparison conditions and any selected address condition, ADDRESS

BREAK being on causes an address failure except in an instruction performed

while COMP ADR BRK INH is on.

Whenever the processor actually makes a memory reference that satisfies

both the comparison conditions and any selected address condition,

ADDRESS STOP being on halts the processor with STOP MEM on and PC

pointing to the instruction that is being performed (running with ADDRESS

STOP on slows down the processor). The stop conditions selected by the ad-

dress condition switches are as follows:

FETCH INST selects access for retrieval of an ordinary instruction, in-

eluding an instruction executed by an XCT or an LUUO (address 41), and

a page refill for same.

When the ADDRESS BREAK
and ADDRESS STOP switches
are both on, the former has pre-
cedence because the page failure
cancels the requested access.

FETCH DATA selects access for retrieval of an address word in an effec-

tive address calculation, any retrieval of an operand other than in an XCT

(read-only and in the read part of a read-modify-write), retrieval of a

dispatch interrupt instruction, and a page refill for any of these and for

any of the conditions selected by the WRITE switch (ie any reference

except an instruction fetch). This switch can also cause a stop inadver-

tently on the retrieval of a trap instruction, a PC word in an MUUO, or a

standard interrupt instruction.

WRITE selects access for writing, both write-only and read-modify-write,

including writing by an LUUO (address 40), a page refill for any of these,

and also for retrieval of the operand in a read-modify-write - in other

words the processor stops separately on the read and write parts of a read-

modify-write. This switch also causes a stop on the first write in an

Processor Operation F-11

Besides controlling USER ADR
COMP with a DATA0 PAG, a

debugging program can directly
manipulate the paging, address,
address condition, and address
break switches by means of a
DATA0 PTR,. But for the pro-

gram to control address stop-
ping (other than by USER ADR
COMP), the operator must turn
the switch on, and the program
can then inhibit its effect by
turning off all three address
condition switches. Should it be
preferred that the address con-
dition be controlled solely by the
operator, the program can still
disable the stop by setting the
address switches to a number
that is unlikely to appear on the
address bus, such as zero, or bet-
ter still an address greater than
any used in the program. It
might seem that an address all
1s is a good candidate for this
purpose, but it is in fact a very
poor choice and results in adver-

tent stops at traps, MUUOs and
the like. The reason for this is
that various types of special ac-
cess do not use the address bus;
and when the bus is not used, it
is generally left free to follow
the adder, which in turn puts
out all Is when neither of its in-
put mixers is enabled.

Note that read in cannot be
done in single instruction mode,
as the function extends over

many instructions and there is
thus no way to continue.

MUUO if the address switches contain the effective address of the MUUO

(even though that address is not used for the access), and can cause a

failure inadvertently on the second write.

ADDRESS STOP also stops any examine or deposit function in the memory

subroutine.

The way the paging switches enable the comparison is as follows. If

PAGING EXEC is on and PAGING USER is off, the comparison is enabled for

executive address space. If PAGING EXEC is off and PAGING USER is on,

the comparison is enabled for user address space provided the program has

turned on USER ADR COMP (User Address Compare Enable flag) in the

upper left corner of the bay 3 indicator panel. If both paging switches are on,

the comparison is enabled for executive address space, provided USER ADR

COMP is on (in other words with both switches on, PAGING USER applies

the flag condition to PAGING EXEC).

Displaying the contents of a selected location and catching a particular

type of reference to a selected location, as described above, are traditional

debugging techniques. The paging switches allow these techniques to be used

more flexibly in a large system that handles many users. The configuration

PAGING EXEC on and PAGING USER off would be used for debugging the

Monitor itself or some other executive program, which quite likely would be

the only program running. PAGING EXEC off and PAGING USER on limits

the procedures to user address space; and control over the comparison by the

executive through a flag allows debugging an individual user program with-

out interfering with either the executive or other users. Similarly both

switches on allows investigation of that part of the executive associated with

a given user, interfering with neither the rest of the executive nor any user.

One who uses these switches often works in conjunction with a debugging or

diagnostic program, and in the flag-limited cases one would be more apt to

use the address break than the address stop, as the latter terminates all

operations.

_

-

Conditions associated with the comparison are displayed by the COMP

lights in the middle of the bay 3 indicator panel. From left to right these

indicate an accumulator write reference, a memory read reference, equal ad-

dresses in a synchronous reference (an operand reference, but limited to the

first in a double operand), and equal addresses in an asynchronous reference

(an instruction fetch or the second in a double operand).

_

The description of each of the remaining switches relates the action it

produces while it is on.

SINGLE INST
Whenever the processor is placed in operation, clear RUN so that it stops at

the end of the first instruction. Hence the operator can step through a pro-

gram one instruction at a time, pressing START for the first one and CONT

for subsequent ones. Each time the processor stops, the lights display the

same information as when STOP is pressed.

APR CLK FLAG (Clock flag) on the bay 3 indicator panel is held off to

prevent clock interrupts while SINGLE INST is on. Otherwise interrupts

would occur at a faster rate than the instructions.

F-12 Processor Operation

Caution

It is not generally worthwhile to attempt to use the interrupt

system in single instruction mode except with the slowest

start-stop devices, such as reader, punch and teletypewriter.

In any event an interrupt hangs up the processor, and the

operator must dispose of it manually before single instruction

operation can continue.

SINGLE INST will not stop the
processor if a hangup prevents
it from getting to the end of an
instruction. Use STOP, RESET,
or SINGLE PULSE.

This type of stop destroys no in-
formation, the way pressing
RESET would.

SINGLE PULSE

Inhibit the clock so that a single clock pulse is generated each time SINGLE

PULSER is pressed. If the processor is not already in operation, an operating

key must be pressed before SINGLE PULSER can be used. If the processor is

running, it converts to single pulse operation at the beginning of the instruc-

tion cycle; hence the clock will not stop if the processor does not reach the

instruction cycle, say because it is hung up in a multiply or divide sequence.
_ To force the processor into single pulse operation regardless of its position in

the operating sequence, turn on both SINGLE INST and SINGLE PULSE -

this stops the processor dead in its tracks.

STOP PAR

Stop with STOP MEM on at the end of any memory reference in which even

parity is detected in a word read. A parity stop is indicated by the following:

PAR ERR FLAG (Parity Error flag) is on in the bottom row on the bay 3

indicator panel; and among the PAR lights in the third row from the bottom,

ERR is on, IGN (ignore parity) is off, and BIT displays the parity bit for the

word read. MA points to the location in which the error occurred.

STOP NXM

Stop with STOP MEM on if a memory reference is attempted but the memory

does not respond within 100 p.s. This type of stop is indicated by FLAGS NXM

(Nonexistent Memory flag) being on in the bottom row on the bay 3 indicator

panel.

If IGN is on (it displays a signal
from the memory), parity errors
are not detected and no stop can
occur. Running with STOP PAR
on slows down the processor.

REPEAT

If SINGLE PULSE is on and the processor is placed in operation, slow down

the clock so that the processor runs at a clock rate determined by the speed

controls at the right end of the maintenance panel. If the processor is not

already running, it can be placed in single-pulse repeat operation by pressing

an operating key and then pressing SINGLE PULSER. If the processor is

running and the switches are turned on in the order REPEAT/SINGLE

PULSE, then it goes into single pulse operation automatically at the begin-

ning of the instruction cycle. If the processor is running with REPEAT off, it

stops at the beginning of the instruction cycle when SINGLE PULSE is

turned on; to restart it, turn on REPEAT and then press SINGLE PULSER

twice. The lamp in the SINGLE PULSER button goes off at each clock pulse

and turns back on each time the clock is retriggered; hence the button glows

Processor Operation F-13

So long as REPEAT remains on,
the selected key remains lit and
its function continues in effect.
In other words the operating
keys are disabled.

The function is often repeated
once more after the switch is
turned off, but this is noticeable
only with very long repeat
delays.

with an intensity that is relative to the clock duty cycle (eg for a given speed,

the light will be dimmer for a program with many memory references). When

either REPEAT or SINGLE PULSE is turned off, operation terminates after

one more clock.

If SINGLE PULSE is off and any operating key is pressed, then every

time the repeat delay can be retriggered, wait a period of time determined by

the setting of the speed control and repeat the given key function. The point

at which the processor can restart the repeat delay depends upon the type of

key function being repeated as follows.

For an initiating function the delay starts when the processor stops with

RUN off. This is either when the program gives a HALT instruction

(STOP PROG) or following the first instruction if SINGLE INST is on.

For an independent function the delay starts every time the function is

done whether RUN is on or off.

A terminating function stops the processor and the delay starts every

time the function is repeated. Reset is generally used only to provide a

chain of reset pulses on the IO bus, and stop is used to troubleshoot the

clock.

In any case continue to repeat the function until REPEAT is turned off.

The speed control includes a six-position switch that selects the delay

range and a potentiometer for fine adjustment within the range. Delay ranges

are as follows.

Position Range

1 200 ns to 2 ps

2 2 to 20 p.s /Js

3 20 /.Ls to 500 /.Ls

4 500 ps to 6 ms

5 6 ms to 160 ms

6 160 ms to 4 seconds

-’

The remaining switches are lo-
cated at the left end of the main-
tenance panel.

FM MANUAL

All fast memory references for any purpose (index register, accumulator,

memory) and under any conditions are made to the fast memory block se-

lected by the FM BLOCK switches. When FM MANUAL is off, the block

switches control fast memory references only in examine and deposit type key

functions with both paging switches off (ie with the function using physical

addressing). Turning on FM MANUAL overrides all other conditions so that

all fast memory references are controlled by the block switches.

MI PROG DIS

Turn on the triangular light beside MEMORY DATA (turn off the light be-

side PROGRAM DATA) and inhibit the program from loading any switches or

displaying any information in the memory indicators. The indicators will thus

continually display the contents of locations selected from the console.

F-14 Processor Operation

MEM OVERLAP DIS

Prevent memory control from overlapping cycles on the memory bus.

MARGIN ENABLE

Enable maintenance operation, including writing with even parity in memory

and checking speed or voltage margins. Maintenance actions attempted by

the program are indicated by the last four lights on the left end of the second

row from the bottom on the bay 3 indicator panel. With maintenance opera-

tion enabled, writing with even parity and checking speed margins are other-

wise entirely under program control. Voltage margins may be checked by the

program or the operator.

Real Time Clock DKlO

The real time clock for the KIlO is usually installed under the console opera-

tor panel in bay 3 and has a small control panel mounted directly on the logic

behind the cabinet door. In the lower part of the panel is a switch for selecting

the internal source or an external input from the BNC connector at the right.

The external input must be supplied through a 100 ohm coaxial cable and

must have a frequency no greater than 400 kHz; its triggering voltage change

must be from -3 volts to ground. If the input is a pulse train, the minimum

pulse width is 100 ns. If the input is a sequence of level changes, it must have

a minimum low level (-3 volts) duration of 400 ns before each positive-going

change, a rise time of 60 ns maximum, and a high level duration of 40 ns

minimum.

The leftmost light in the upper row at the top of the panel indicates when

the clock is on (ie when the counter is enabled). The next two lights are the

Count Overflow and Count Done flags. TIME OUT indicates when the num-

bers in the interval register and the clock counter are identical - this light

goes out as soon as either changes state. The remaining lights in the upper

row are the PI assignment. The two lights at the left in the lower row display

signals that synchronize the DATA1 and DATA0 to the clock so that counting

is postponed while the counter is being read and there is no sampling while

the interval is being loaded. PI OK 8 is a processor-generated signal which

indicates that there is no interrupt being held and no channel waiting for an

interrupt; the next light is the User Time flag. The final two lights indicate

the origin of the clock source.

This has no effect on pipe-
lining within memory control,
such as overlapping the page
checking of consecutive memory
subroutines.

For information on mainten-
ance operation, including use of
the MARGIN SELECT and
MANUAL MARGIN ADDRESS
switches, refer to Chapter 10 of
the maintenance manual.

Clock Control Panel

Processor Operation F-15

F.2 KAIO Operation

Most of the controls and indicators used for normal operation

of the processor and for program debugging are located on the

console operator panel shown here. The indicators are on the

vertical part of the panel; in front of them are two rows of two-

position keys and switches (keys are momentary contact,

switches are alternate action). A key or switch is on or repre-

sents a 1 when the front part is down.

The thirty-six switches in the front row and the eighteen

at the right in the back row are respectively the data and

address switches through which the operator can supply words

and addresses for the program and for use in conjunction with

the operating keys and switches. The correspondence of

switches to bit positions is indicated by the numbers at the

bottom row of lights. At the left end of the back row are ten

operating switches, which supply continuous control levels to

the processor. At their right are ten operating keys, which

initiate or terminate operations in the processor. The names of

the operating keys and switches appear on the vertical part of

the panel below the lights.

Also of interest to the operator is the small panel shown

overleaf, which is located above the main panel at the left of

the tape reader. The upper section of this panel contains a

total hours meter and the margin-check controls. The lower

section contains the power switch, speed controls for slowing

down the program, switches to select the device for readin

mode (lower part in represents a l), and four additional opera-

ting switches. The normal position for these last four is with

the upper part in; in this position FM ENB (fast memory en-

able) is on, the others are all off.

Indicators

When any indicator is lit the associated flipflop is 1 or the

associated function is true. Some indicators display useful in-

formation while the processor is running, bu , many change

too frequently and can be discussed only in ter ns of the infor-

mation they display when the processor is sto jped. The pro-

gram can stop the processor only at the con 3letion of the

HALT instruction; the operator can stop it at tk : end of every

instruction or memory reference, or for mainten, nce purposes,

after every step in any operation that uses the shift counter

(shifting, multiplication, division, byte manipuh ion).

Of the long rows of lights at the right on .he operator

panel, the top row displays the contents of PC, tht middle row

displays the instruction being executed or just COI; pleted, and

the bottom row are the memory indicators. The r ght half of

the middle row displays MA, the left half displays \R.

-

-

F-16 Processor Operation

Above: Margin Check and Main-

tenance Panel
Opposite: Console Operator

Panel

Note: If a REQUEST light stays
on indefinitely with the associ-

ated IN PROGRESS light off
and PC is static, check the PI
CYC light on the indicator
panel at the top of bay 2. If it is
on, a faulty program has hung
up the processor. Press STOP.

In an IO instruction the left three instruction lights

are on, the remaining instruction lights and the left

AC light are the device code, and the remaining AC

lights complete the instruction code. The I, index and

MA lights change with each indirect reference in an

effective address calculation; at the end of an instruc-

tion I is always off.

Above the memory indicators appear two pairs of

words, PROGRAM DATA and MEMORY DATA. If

the triangular light beside the former pair is on, the

indicators display a word supplied by a DATA0 PI,; if

any other data is displayed the light beside MEMORY

DATA is on instead. While the processor is running

the physical addresses used for memory reference (the

relocated address whenever relocation is in effect) are

compared with the contents of the address switches.

Whenever the two are equal the contents of the ad-

dressed location are displayed in the memory indica-

tors. However, once the program loads the indicators,

they can be changed only by the program until the

operator turns on the MI program disable switch, exe-

cutes a key function that references memory, or

presses the reset key (see below).

The four sets of seven lights at the left display the

state of the priority interrupt levels. The PI ACTIVE

lights indicate which levels are on. The IOB PI

REQUEST lights indicate which levels are receiving

request signals over the in-out bus; the PI REQUEST

lights indicate levels on which the processor has accepted requests. Except in

the case of a program-initiated interrupt, a REQUEST light can go on only if

the corresponding ACTIVE light is on. The PI IN PROGRESS lights indicate

levels on which interrupts are currently being held; the level that is actually

being serviced is the lowest-numbered one whose light is on. When an IN

PROGRESS light goes on, the corresponding REQUEST goes off and cannot

go on again until IN PROGRESS goes off when the interrupt is dismissed.

At the left end of the panel are a power light and these control indicators.

RUN

The pr6cessor is in normal operation with one instruction following another.

When the light goes off, the processor stops.

PI ON

The priority interrupt system is active so interrupts can be started (this corre-

sponds to CON1 PI, bit 28).

Processor Operation F-17

PROGRAM STOP

IR now contains a HALT instruction. If RUN is off, MA displays an address

one greater than that of the location containing the instruction that caused

the halt, and PC displays the jump address (the location from which the next

instruction will be taken if the operator presses the continue key).

If RUN and PROGRAM STOP
are both on, the processor is
probably in an indirect address
loop. Press STOP.

-

USER MODE

The processor is in user mode (this corresponds to bit 5 of a PC word).

MEMORY STOP

The processor has stopped at a memory reference. This can be due to single

cycle operation, satisfaction of an address condition selected at the console,

reference to a nonexistent memory location, or detection of a parity error.

The remaining processor lights are on the indicator panels at the tops of

the bays [illustrated on next page]. Bay 2 displays AR, BR and MQ, the output

of the AR adder, and the parity buffer which receives every word transmitted

over the memory bus. The RL and PR lights at the lower right display the

relocation and protection registers for the low part of the area assigned to a

user program and the left eight bits of the relocated address for that part.

The upper four rows on the bay 1 panel include the indicators for reader,

punch and terminal (see Appendix Hl, DECsystem-10 manual). The bottom

row displays the information on the data lines in the IO bus. The AR lights at

the upper right are the flags - FXU is Floating (exponent) Underflow, DCK

is No Divide (divide check). OV COND is the condition that the 0 and 1

carries are different, ie the condition that indicates overflow. The First Part

Done flag is BYF6 in the MISC lights in the top row; User In-out is IOT

USER in the EX lights at the center of the panel. The CPA lights in the top

row and the five lights under them at the left are the processor conditions -

PDL OV is Pushdown (list) Overflow. The AS= lights in the middle row

indicate when the (relocated) core memory address or the fast memory ad-

-

The remaining lights on the

panels are for maintenance. If
the operator must use them, he
should consult the maintenance

-

dress is the same as the address switches. manual and the flow charts.

Operating Keys

Each key except STOP turns on one of the key indicators at the upper right on

the bay 2 panel. These are for flipflops that allow the key functions to be

repeated automatically and also allow certain of them to be synchronized to

the processor time chain so they can be performed while the processor is

running.

CAUTION

Neuer press two keys simultane-
ously as the processor may at-
tempt to perform both functions
at once.

F-18 Processor Operation

h

Indicator Panel, KA 10 Arithmetic Processor, Bay 1

Indicator Panel, KA 10 Arithmetic Processor, Bay 2

READ IN
Clear all IO devices and all processor flags including User; turn on the RIM If RUN is on, pressing this key

light in the upper right on bay 1 and the KEY RDI light in the upper right on has no effect.
-

bay 2. Execute DATA1 D,O where D is the device code specified by the readin

device switches on the small panel at the left of the reader. Then execute a

series of BLKI D,O instructions until the left half of location 0 reaches zero, at

which time turn off RIM and KEY RDI. Stop only if the single instruction

switch is on; otherwise turn on RUN and execute the last word read as an

instruction. [For information on the data format refer to 65.1.1

Codes of readin devices are: PTR 104, DTC 320, DTC2 330, TMC 340,

TMC2 350.

The rightmost device switch is
for bit 9 of the instruction and
thus selects the least significant
octal digit (which is always 0 or
4) in the device code.

CAUTION
Do not initiate any other key
function while RIM is on. If read
in must be stopped (eg because
of a crumpled tape), press
RESET (see below).

START

Load the contents of the address switches into PC, turn on RUN, and begin

normal operation by executing the instruction at the location specified by PC.

If RUN is on, pressing this key

has no effect.

This key function does not disturb the flags or the IO equipment; hence if

USER MODE is lit a user program can be started.

CONT (Continue)

Turn on RUN (if it is off, and begin normal operation in the state indicated by

the lights.

STOP

Turn off RUN so the processor stops before beginning the next instruction.

Thus the processor usually stops at the end of the current instruction, which

is displayed in the lights. However, if a key function that can be performed

while RUN is on has been synchronized, the processor performs that function

before stopping. In either case PC points to the next instruction.

If the processor does not reach the end of the instruction within 100 ps,

inhibit further effective address calculation - it is assumed the processor is

caught in an indirect addressing loop. Pressing CONT when the processor is

stopped in an address loop causes it to start the same instruction over.

RESET
Clear all IO devices and clear the processor including all flags. Turn on the

triangular light beside MEMORY DATA (turn off the light beside PROGRAM

DATA). If RUN is on duplicate the action of the STOP key before clearing.

If STOP will not stop the proces-
sor, pressing this key will.

F-20 Processor Operation

Note that an instruction exe-
cuted from the console can alter
the processor state just like any
instruction in the program: it
can change PC by jumping or
skipping, alter the flags, or even
cause a non-existent-memory

stop.

XCT

Execute the contents of the data switches as an instruction without incre-

menting PC. If RUN is on, insert this instruction between two instructions in

the program. Inhibit priority interrupts during its execution to guarantee

that it will be finished.

If USER MODE is lit all user restrictions apply to an instruction exe-

cuted from the console.

NOTE

The remaining key functions all reference memory. They use

an absolute address and all of memory is available to them; in

other words protection and relocation are not in effect even if

USER MODE is lit. However they can set such flags as

Address Break and Nonexistent Memory.

EXAMINE THIS

Display the contents of the address switches in the MA lights and the con-

tents of the location specified by the address switches in the memory indica-

tors. Turn on the triangular light beside MEMORY DATA (turn off the light

beside PROGRAM DATA). If RUN is on, insert this function between two

instructions in the program.

If RUN is on, pressing this key
has no effect.

EXAMINE NEXT

Add 1 to the address displayed in the MA lights and display the contents of

the location specified by the incremented address in the memory indicators.

Turn on the triangular light beside MEMORY DATA (turn off the light be-

side PROGRAM DATA).

DEPOSIT

Deposit the contents of the data switches in the location specified by the

address switches. Display the address in the MA lights and the word depos-

ited in the memory indicators. Turn on the triangular light beside MEMORY

DATA (turn off the light beside PROGRAM DATA). If RUN is on, insert this

function between two instructions in the program.

DEPOSIT NEXT

If RUN is on, pressing this key
has no effect.

Add 1 to the address displayed in the MA lights and deposit the contents of

the data switches in the location specified by the incremented address. Dis-

play the word deposited in the memory indicators. Turn on the triangular

light beside MEMORY DATA (turn off the light beside PROGRAM DATA).

Processor Operation F-21

Operating Switches

to the instruction that was being executed, or if the MC WR light on bay 2 is

Whenever the processor references memory at the location specified by the

address switches (relocated if USER MODE is on), the contents of that loca-

tion are displayed in the memory indicators (unless the light beside

PROGRAM DATA is on). The group of five switches at the left of the keys

allows the operator to make the processor halt or request an interrupt when

reference is made to the specified location in core memory for a particular

purpose (no action is produced by fast memory reference). The purpose is

selected by the three address condition switches. INST FETCH selects the

condition that access is for retrieval of an instruction (including an instruc-

tion executed by an XCT or contained in an interrupt location or a trap for an

unimplemented operation) or an address word in an effective address calcula-

tion. DATA FETCH selects access for retrieval of an operand other than in an

XCT (read-only or read-modify-write). WRITE selects access for writing only.

Whenever reference to the specified location satisfies any selected address

condition, the processor performs the action selected by the other two

switches. ADR STOP halts the processor with MEMORY STOP on (PC points

AC and index register refer-
ences can be included by turn-
ing off the FM ENB switch (see
below).

If the interrupt for an address
break is started before the com-

_

on, PC may point to the one following it). ADR BREAK turns on the CPA

ADR BRK light (Address Break flag, CON1 APR, bit 21) on bay 1, requesting

an interrupt on the processor channel.

The description of each switch relates the action it produces while it is on.

SING INST

Whenever the processor is placed in operation, clear RUN so that it stops at

the end of the first instruction. Hence the operator can step through a pro-

gram one instruction at a time, by pressing START for the first one and

CONT for subsequent ones. Each time the processor stops, the lights display

the same information as when STOP is pressed.

caused it, that instruction will
be restarted upon the return

pletion of the instruction that

from the interrupt routine un-
less provision is made by the
program to do otherwise. In
such a case, the address break
will recur, producing a loop be-
tween the processor interrupt
and the interrupted program.
The operator can free the proc-
essor by momentarily releasing
the break switch.

CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts

while SING INST is on. Otherwise interrupts would occur at a faster rate

than the instructions.

SING CYCLE

Whenever the processor is placed in operation, stop it with MEMORY STOP

on at the end of the first core memory reference. Hence the operator can step

through a program one memory reference at a time, by pressing START for

the first one and CONT for subsequent ones. To determine what information

is displayed in the lights, consult the flow charts.

PAR STOP

Stop with MEMORY STOP on at the end of any memory reference in which

even parity is detected in a word read. A parity stop is indicated by the

following: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the

SING INST will not stop the
processor if a hangup prevents
it from getting to the end of an

instruction. Use STOP or
RESET.

To stop at AC and index register
references, turn off the FM ENB
switch (see below).

F-22 Processor Operation

If IGN is on tit displays a signal
from the memory), parity errors
are not detected and no stop can
occur.

PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are off,

STOP is on, and BIT displays the parity bit for the word in the parity buffer at

the left.

NXM STOP

Stop with MEMORY STOP on if a memory reference is attempted but the

memory does not respond within 100 ps. This type of stop is indicated by CPA

NXM FLAG (Nonexistent Memory flag) on bay 1 being on.

The key function is repeated
once after REPT is turned off,
but this is noticeable only with

very long repeat delays.

The end of a key fun tion
equivalent to completio L

is
of all

processor operations associated
with the function only for read
in, examine, examine next, de-
posit, and deposit next. In other
cases the processor continues in

REPT

If any key (except STOP) is pressed, then every time the key function is

finished, wait a period of time determined by the setting of the speed control

and repeat the given key function. If CONT is pressed and no switch is on that

would stop the program (eg SING INST, SING CYCLE), then continue follow-

ing the repeat delay whenever a HALT instruction is executed. Continue to

repeat the key function until RESET is pressed or REPT is turned off.

The speed control includes a six-position switch that selects the delay

range and a potentiometer for fine adjustment within the range. Delay ranges

are as follows.

operation. Eg the execute func-
tion is finished once the instruc-

Position Range

tion to be executed is set up
internally, but the processor 1 270 ms to 5.4 seconds

then executes that instruction.
Hence when using speed range
6, the operator must be careful
not to allow the key function to

2 38 ms to 780 ms

3 3.9 ms to 78 ms

4 390 KS to 7.8 ms
restart before the processor is
really finished. 5 27 p.s to 540 IJ-s

6 2.2 (*s to 44 p.s

MI PROG DIS

Turn on the triangular light beside MEMORY DATA (turn off the light be-

side PROGRAM DATA) and inhibit the program from displaying any infor-

mation in the memory indicators. The indicators will thus continually display

the contents of locations selected from the console.

REPT BYP

If REPT is on, trigger the repeat delay at the beginning of the key function.

Hence the function is repeated even if it does not run to completion.

FM ENB

This switch is left on for normal operation with a fast memory. Turning it off

(lower part in) substitutes the first sixteen core locations for the fast memory.

The switch is left off if there is no fast memory, and it can be used to allow

stopping or breaking at fast memory references.

Processor Operation F-23

SHIFT CNTR MAINT

Stop before each step in any shift operation. Pressing CONT resumes the

operation. Once a shift has been stopped, the processor will continue to stop at

each step throughout the rest of the given shift operation even if the switch is

turned off.

At the right end of panel 1J behind the bay doors are two toggle switches.

FP TRP causes the floating point and byte manipulation instructions (codes

130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap and

interrupt locations to 140-161 for a second processor connected to the same

memory.

Real Time Clock DKlO

The real time clock for the KAlO is usually installed in a DECtape cabinet

and has a small control panel mounted directly on the logic behind the cabi-

net door. In the lower part of the panel is a switch for selecting the internal

source or an external input from the BNC connector at the right. The external

input must be supplied through a 100 ohm coaxial cable and must have a

frequency no greater than 400 kHz; its triggering voltage change must be

from -3 volts to ground. If the input is a pulse train, the minimum pulse

width is 100 ns. If the input is a sequence of level changes, it must have a

minimum low level (-3 volts) duration of 400 ns before each positive-going

change, a rise time of 60 ns maximum, and a high level duration of 40 ns

minimum.

The leftmost light in the upper row at the top of the panel indicates when

the clock is on (ie when the counter is enabled). The next two lights are the

Count Overflow and Count Done flags. TIME OUT indicates when the num-

bers in the interval register and the clock counter are identical - this light

goes out as soon as either changes state. The remaining lights in the upper

row are the PI assignment. The two lights at the left in the lower row display

signals that synchronize the DATA1 and DATA0 to the clock so that counting

is postponed while the counter is being read and there is no sampling while

the interval is being loaded. PIOK is a processor-generated signal which

indicates that there is no interrupt being held and no channel waiting for an

interrupt; the next light is the User Time flag. The final two lights indicate

the origin of the clock source.

Clock Control Panel

F-24 Processor Operation

Appendix G

Handling Memory

A number of different types of memory units are available for use with
PDP-10 processors. In a DECsystem-10, all are core memories that are
external to the processor (on an external bus) and can be shared with other
processors, central or peripheral. In a DECSYSTEM-20, all memory is in-
ternal to the individual system; in other words it is not directly accessible
to any external processor, although provision is made for transfers of data
between memory and IO devices via internal channels or some similar
mechanism. The earlier internal memories are core, but all current ones
are MOS. External memories are set up and controlled by switches; inter-
nal memory is handled entirely by software. Mixing of various kinds of
units is more likely to occur in older systems as a result of upgrading or
adding new models, whereas the greatly increased capacity and efficiency
of current memories makes mixing less likely in newer systems.

Although the programmer usually regards an address simply as the
number of a location somewhere in memory, the memory system interprets
the address in two or more parts depending on the physical configuration of
the memory units. With the traditional configuration of a single controller
and associated storage module in each memory, the memory system inter-
prets the address in two parts: the high order part is the number of a
memory, and the low order part is the number of a location in the memory
selected by the high order part. Every such memory has switches for select-
ing its number, i.e. the number to which that particular memory will re-
spond when it appears in the appropriate bits on the address bus. For a
given address length, the number of bits used for the memory number
depends upon the size of the individual memory - the larger the size, the
more bits are needed to specify the location within the memory and the
fewer that are needed to select the memory itself. In more recent units, a
single controller may have up to four storage modules, and some memories
contain two controllers. In these cases the address word is divided into
several parts, where the highest order part selects the controller, the next

G-l

selects the module, and the remaining bits select the location. With KLlO
internal memories, the two least significant bits are used only for the start-
ing position in a 4-word group, and which words are accessed in the group is
determined by the request signals. The newest KLlO MOS memory, the
MF20, has a single controller with three storage modules, each of which
acts like an independent memory unit, with 4-word access so interleaving is
unnecessary.

Every unit has some means for taking it off line or “deselecting” it. To
deselect a memory relative to a given processor means to remove that mem-
ory logically from the bus for that processor; in other words for the given
processor that memory no longer exists. In some cases only the entire unit
can be deselected, but with more recent memories, controllers and even
storage modules can be deselected individually. If a storage module fails, it
must be deselected if the system is to continue to run. Moreover, if the
processor is a KAlO or the Monitor is a TOPS-10 version earlier than 5.06,
the deselected memory must be replaced so there is no gap in the physical
address space. This may be done by resetting the switches on the highest
numbered memory so it fills the gap left by the deselected one. When any
system is installed, the system administrator (in consultation with Field
Service) should work out a separate procedure to be followed in the event
that any given storage module fails. In other words there should be a set of
procedures, and the set should contain as many procedures as there are
modules in the system. A procedure might be as simple as filling a gap, but
it may also involve the software or entail other complications. Whenever
the organization of the system is changed in any way, that fact should be
recorded, and the administrator should review, and if necessary change, the
procedures to make sure they are appropriate to the new configuration.
When a failed module is deselected, all other modules interleaved with it
must also be deselected if speed is to be maintained. But if memory capacity
is more important that speed, the other modules can be run without in-
terleaving, or in a 4-way situation, two of the remaining modules can be 2-
way interleaved.

G.l DECsystem-10 Memories

There are seven types of external memories available for use in a
DECsystem-10. 81.10 lists the types and gives their size and timing charac-
teristics when used in a system based on a KAlO or KIlO processor. 01.7
lists the characteristics of the several among them that are suitable for use
with the KLlO. An MGlO or MHlO memory may be accessed by up to eight
different processors; in other words one of these memories may be con-
nected to eight memory buses and thus be part of the memory systems of
eight different processors. The earlier memories are limited to four proces-
sor ports. Most memories are designed for use with either a 22- or l&bit
address and may therefore be used with any PDP-10 processor that can
handle external memory. The earliest memories were designed specifically

G-2 Handling Memory

-

for use with a KAlO; these are limited to an l&bit address and can be used
on a KIlO memory bus only by interfacing to it through a KIlO-M adapter-l.
The more recent external memories can be used with a KLlO by having
them on a KIlO memory bus that is interfaced to the KLlO S bus by a
DMA20 adapter. The KIlO-M is transparent to programmer and operator,
but the DMA20 (discussed at the end of this section) must be set up by the
software, and it supplies error and other information to the software.

Besides address switches, every memory has a power switch, interleave
and deselect switches, a restart or reset switch, and a single step switch.
With the MFlO and earlier memories, each unit actually has a separate set
of address, interleave and deselect switches for each of the four processors

. to whose buses it may be connected. Hence a given memory may be number
2 for processor 0 but be number 7 for processor 1; by the same token it may
be interleaved with some other memory relative to processor 1 but be
deselected altogether from processors 2 and 3. A given memory should,
however, have the same number with respect to all processors controlled by
a single Monitor; e.g. if the Monitor running in central processor 0 sets up a
direct-access processor to move data in or out of the memory connected to
processor 0, those memory units used by both processors should have the
same numbers.

Memory setup and operation differs among types, and these are dis-
cussed separately in the following pages. However, the MGlO and MHlO
memories are described together as they are almost identical. Moreover,
these two most recent memories employ a different interleave procedure
than that used by all of the others. Among the earlier memories, some can
be interleaved only in pairs, whereas others can be interleaved in either
pairs or quadruplets. In any event the memories in a set that is to be
interleaved must all be the same size and must occupy a contiguous area of
the overall address space. For a 2-way interleave, the pair of memories
must be numbered n and n + 1, where n is even. The interleaving is accom-
plished by setting the interleave switches for the same processor at both
memories to the INTL position. This action interchanges the least signifi-
cant bits of the memory number and the location, so the least significant
address switch at the memory is actually selecting a state for memory
address bit 35. Hence all even addresses given by the processor in the
interleaved set actually address the even-numbered memory, and all odd
addresses address the odd-numbered memory. A 4-way interleave must be
done on a group of memories numbered n, n + 1, n + 2 and n + 3, where n is
divisible by four. The interleave is accomplished by interchanging both the
least significant bits of the memory number and location and the next more
significant bits of those two quantities. The illustration on the next page
shows the complete address structure for memories of all sizes, with and
without interleaving.

Most or all of the switches on a memory are located on a switch panel
mounted with the logic wiring inside the front door of the bay. The lights
are always on an outside panel at the top of the bay. Every indicator panel

1 The same considerations apply to use with direct access processors; e.g. using an 1%bit
memory with a DFlOC or a KIlO-type bus on a DLlO requires an adapter.

Handling Memory G-3

ADDRESS STRUCTURE

m Memory number

1-1 Stack address (location)

Memory
Size

Address Minimum
Bit Pairs Total
Switched Memory

8K

16K

None

None

16K 1 32K

16K

32K

2

None

64K

32K 1 64K

32K

64K

2

None

128K

64K 1 128K

64K

128K

2

None

256K

128K 1 256K

128K

256K

2

None

512K

256K

256K

512K

1024K

Address Bit Configuration
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

I

I

1

I

-7

6

Handling Memory

-

has sets of memory address and memory buffer lights. These indicate the
last location accessed and display the information read from or written into
that location (except the buffer lights are off after the read part of a read-
modify-write). All transfers between bus and core are made through the
buffer. On the MFlO and earlier memories, the four ACTIVE lights identify
the processor that currently has access, and the two LAST lights indicate
which of processors 2 and 3 more recently had access. Priority among proc-
essors is their numerical order, with 0 first. However adhering strictly to
this priority in a memory used by four processors might easily lead to the
total exclusion of the lowest priority processor. To make this occurrence less
likely, in a conflict between processors 2 and 3, access is granted to the one
that has had it less recently. The panel also has a power indicator, lights
that identify the type of request, and a parity bit. A memory in operation
but idle is indicated by the AW light, meaning the memory is awaiting a
request. STOP goes on only following completion of a cycle in single step
mode. In a read access a memory completes its cycle without need of further
communication from a processor. Following the read part of a write or read-
modify-write however, the memory waits with SYNC on for a write restart,
receipt of which is indicated by a light often labeled RS. Failure of the
processor to supply the restart turns on the INC light (if present). Such an
incomplete request may or may not hang up a specific type of memory, but
it always results in leaving the addressed location clear. Since the system
uses odd parity, a subsequent read at that location will result in a bad
parity zero. Completion of a cycle is sometimes indicated by a CYC DONE
light. Some memories identify all processors currently making requests.
There are also lights that reflect the internal state of the memory (for
further information refer to the appropriate maintenance manual).

The system administrator should be aware that even if the hardware
and software are capable of dealing with noncontiguous memory, some of
the programs being run may require that the memory be contiguous. This
could be necessitated only by real time programs, but in general it is best to
avoid having memory gaps unless they are known to be of no consequence.
Note that to avoid gaps in a system with different size memories requires
arranging them so the smaller memories are at the top or are grouped so as
to fill the spaces between the larger memories. Consider a system with two
32K memories and one 16K memory. The 32K memories must be numbered
0 and 1, and using the same numbering scheme, the 16K unit must be
numbered 2.0 (really 4 in 16K terms). If there were two 16K units we could
number them 2 and 3, with their space straddled by the 32K modules
numbered 0 and 2 (i.e. the 16K modules are numbered 1 and 1% in 32K
terms).

Handling Memory G-5

MA10 CORE MEMORY

This unit has a capacity of 16K words, a cycle time of 1.00 IJ-s, and
operates only with an 18-bit address, of which four bits select the unit.
At the left inside the front door are two tall panels of margin check
switches, all of which should be set left. The switch panel is in the
lower right corner. Note that there is no power switch: power is con-
trolled by the circuit breaker on the power control panel on the rear
plenum door. The three switches at the bottom of the panel are for all
processors. Ordinarily an incomplete cycle does not affect memory op-
eration; the unit simply drops the unfinished cycle and awaits the next
request. But running with ERROR STOP on causes the memory to

cease operation with INC on when a proc-
essor fails to supply a write restart. To
free the memory so it may await further
processor requests, push the RESTART
button. Pressing RESTART while SIN-
GLE STEP is on allows the memory to re-
spond to just one processor request. Once
this single cycle has been completed,
STOP goes on and the memory will ac-
knowledge no further requests, thus giv-
ing a nonexistent memory indication in
any processor that makes one. Pressing
RESTART again allows the memory to re-
spond to one more request. It is possible
for a power line transient to hang up the
memory in a request; to free it, turn the
power off and back on again by means of
the circuit breaker at the back.

The remaining switches are in four
sets for the individual processors. In each
set the MADR switches allow selection of
the memory number for address bits
18-21. Setting the fifth toggle to INTL in-

-?
2
z

Above: Switch Panel
Left: Indicator Panel

terchanges address bits 21 and 35 for a two-way interleave. Setting the
deselect switch to the 16 position deselects the whole unit from the
corresponding processor. However the switch also has positions for
deselecting the lower or higher half of the memory, resulting in an 8K
memory with a &bit number. Eg setting the switch to L8 deselects the
lower half and selects a 1 for address bit 22; the unit is then an 8K
memory whose locations are addressable in the upper half of the origi-
nal 16K address space. For 8K operation the interleave switch should
always be set to NORM.

G-6 Handling Memory

MB10 CORE MEMORY

This unit has a capacity of 16K words, a cycle time of 1.65 ps, and
- operates only with an 1%bit address, of which four bits select the unit.

Several switches for all processors are located on the indicator panel.
Inside the front door are three switch panels. The one in the upper
right corner has a rotary switch for selecting operation with any single
processor or selecting the more usual multiprocessor operation. Also on
this small panel is a button labeled RESTART, even though there is
another button with the same label on the indicator panel. Should a
processor fail to supply a write restart, the memory ceases operation
with SYNC remaining on; to free the memory so it may await further
processor requests, push both restart buttons at the same time. Press-
ing the indicator panel RESTART while SINGLE STEP is on allows
the memory to respond to just one processor request. Once this single
cycle has been completed, STOP goes on and the memory will acknowl-
edge no further requests, thus giving a nonexistent memory indication
in any processor that makes one. Pressing the top RESTART again
allows the memory to respond to one more request. It is possible for a
power line transient to hang up the memory in a request; to free it,
turn the power off and back on again.

On the two small panels in the lower right corner are four sets of
switches for the individual processors. Each set contains a deselect
switch, an interleave switch, and four MA switches that allow selec-
tion of the memory number for address bits 18-21. Setting the in-
terleave toggle to INTL interchanges address bits 21 and 35 for a two-
way interleave.

Indicator Panel

Switch Panels

The toggles at the left
end of the logic rows are
margin check switches,
all of which should be set
down. The toggle on the
little panel between rows
U and V should be set left
(+ 10 FXD).

Handling Memory G-7

MD10 CORE MEMORY

This unit may contain up to four 32K memory modules, which are
numbered and interleaved independently, but which share a common
interface with the bus and therefore otherwise act as a single memory
of 32, 64, 96 or 128K words. The cycle time is 1.8 l_~s or less, and the
unit operates only with an l&bit address, of which four bits select the

Upper: Indicator Panel
Lower: Switch Panel

individual module. Interleaving among modules within a single MD10
is useless, because the whole unit is tied up whenever any module is
performing a cycle even if it has already disconnected from the bus, as
while a word is being written. Hence interleaving must be done be-
tween a module and one or three other 32K memories, which may
themselves be modules in other MDlOs. Note that there is no require-
ment of continuity of the address space within a given MD10 - if
there were, interleaving would be impossible. Suppose a memory sys-
tem consisted of two full-size MDlOs with complete two-way interleav-
ing. The modules in one unit could just as well be numbered 0, 3, 5 and
6, with the remaining numbers applied to the modules in the other
unit.

Several switches for all processors are located on the indicator
panel. Pressing RESTART while SINGLE STEP is on allows the mem-

G-8 Handling Memory

ory to respond to just one processor request. Once this single cycle has
been completed, STOP goes on and the memory will acknowledge no
further request, thus giving a nonexistent memory indication in any
processor that makes one. Pressing RESTART again allows the mem-
ory to respond to one more request.

The remaining switches are on the big panel inside the front door.
This panel has four large sections for the individual processors and a
column at the left end for all processors. The upper four toggles in the
column allow deselecting a single module from all processors. The but-
ton at the bottom is not used, and the remaining switch actually has
three positions, including an unmarked center one. With this switch in
the unmarked position, an incomplete cycle does not affect memory
operation; the unit simply drops the unfinished cycle and awaits the
next request. But running with the switch up in the HUNG position
causes the memory to cease operation with INC RQ on when a proces-
sor fails to supply a write restart. To free the memory so it may await
further processor requests, press the switch down to the momentary-
contact CLEAR position.

Each of the large sections of the panel contains four sets of MA
switches for independently selecting the numbers of the individual
modules for address bits 18-21. (Note that each of the upper four rows
of switches extending across the entire panel affects the single module
specified by the label at the left end.) Each deselect switch allows the
operator to disconnect the entire unit from the specified processor. The
right column of each section contains five interleave switches, of which
the upper four are for two-way interleaving of individual modules and
the bottom one is for four-way interleaving of all modules together.
Setting one of the upper four switches right interchanges address bits
20 and 35 only for the given module with respect to the specified proc-
essor. Setting the bottom toggle to the right interchanges address bits
19 and 34 only for the specified processor but for all modules in the
unit.

Hence for a given processor some modules can be used normally
while others are interleaved on a two-way basis with other memories
outside the unit. But if one module enters into a four-way interleave
with respect to a given processor, all modules must. This means that
when a unit is used in a four-way interleave for a given processor,
among the switches for that processor the 19/34 switch and all four
19/35 switches must be set to INTL. If four-way interleaving is used
among MDlOs, there must be four of them and each must contain the
same number of modules.

Above the switch panel is
a narrow panel with
three margin check
switches, all of which
should be in the center
NOM position. Above
that is a power supply
panel whose switch is not
operative. The margin
toggles at the bottom left
should all be set down.

Note that one can
deselect all modules from
one processor, or one
module from all proces-
sors, but not a single
module from a single
processor.

The restriction on num-
ber of units can be
bypassed through worth-
less interleaving among
modules within a single
unit. This produces some-
what lopsided interleav-
ing - eg one could have a
three-way interleave of
three MDlOs with 32K,
32K and 64K.

Handling Memory G-9

ME10 CORE MEMORY

This unit has a capacity of 16K words, a cycle time of 1.00 ks, and
operates with either a 22- or l&bit address, of which eight or four bits
select the unit. At the left inside the front door is a tall panel of margin
check switches, all of which should be set left. The switch panel is at
the lower right. Note that there is no power switch: power is controlled
by the circuit breaker on the power control panel on the rear plenum
door. The three switches at the bottom of the panel are for all proces-

Above: Switch Panel
Left: Indicator Panel

sors. Ordinarily an incomplete cycle does
not affect memory operation; the unit sim-
ply drops the unfinished cycle and awaits
the next request. But running with ER-
ROR STOP on causes the memory to cease
operation with INC on when a processor
fails to supply a write restart. To free the
memory so it may await further processor
requests, push up the RESET switch.
Pressing RESET up while SING STEP is
on allows the memory to respond to just
one processor request. Once this single cy-
cle has been completed, STOP goes on and
the memory will acknowledge no further
requests, thus giving a nonexistent mem-
ory indication in any processor that makes
one. Pressing RESET again allows the
memory to respond to one more request.

The rest of the panel is in four sec-

--

-

tions for the individual processors. Each
section has two rows of MADR switches
for selecting the memory number. If the
bus supplies a 22-bit address, all eight
MADR switches are used to select the
memory number for address bits 14-21.
For an l&bit address the upper row must
all be set to the center IGN position, and
the lower row is used to select the memory
number for address bits 18-21. Complet-
ing each panel section are a deselect
switch and a pair of interleave switches.
Setting the 35 toggle
changes address bits 21
way interleave. Setting
interchanges bits 20 and
interleave.

to INTL inter-
and 35 for a two-
the 34 toggle up
34 for a four-way

G-10 Handling Memory

MFlO CORE MEMORY

This unit has a capacity of either 32K or 64K words, a cycle time of
1.00 ks, and operates with either a 22- or l&bit address. The number
of bits that select the unit depends on both the address length and the
unit capacity. All switches are on panels in the lower half of the unit
inside the front door. The tall panel at the left has margin check
switches, all of which should be set left. At the upper right is a small
maintenance panel, of interest in
that it contains a size switch, which
is set by Field Service to make the
unit operate in a manner appropriate
to the installed capacity, and whose
position therefore indicates that ca-
pacity. Note that there is no power
switch: power is controlled by the cir-
cuit breaker on the power control
panel on the rear plenum door.

The four-part switch panel is at
the lower right. The three switches at
the bottom are for all processors. Or-
dinarily an incomplete cycle does not
affect memory operation; the unit
simply drops the unfinished cycle and
awaits the next request. But running
with ERROR STOP on causes the
memory to cease operation with INC
RQ on when a processor fails to sup-
ply a write restart. To free the mem-
ory so it may await further processor
requests, push up the RESET switch.
Pressing RESET up while SING
STEP is on allows the memory to
complete only one cycle in response to

Above: Switch Panel
Right: Indicator Panel

a single processor request. In the absence of a second request in the
interim, pressing RESET again allows another request-cycle combina-
tion. However, if following completion of a cycle, a processor makes a
request before RESET is pressed, the memory will return an ack-
nowledgement, thus avoiding a nonexistent memory indication. Of
course the memory will hang in the second cycle, either waiting to
write or with the processor awaiting a read restart. Pressing RESET in
this circumstance causes the memory to complete its cycle leaving it
free to acknowledge yet another request.

The remaining switches are in four sets for the individual proces-
sors. Each set has two rows of MADR switches for selecting the mem-
ory number. If the bus supplies a 22-bit address, the upper row is used
to select the left four bits (address bits 14-17) in the 6- or 7-bit memory
number. For an l&bit address the upper switches must all be set to the

Handling Memory G-11

IGN position. The configuration of the switches in the lower row de-
pends only on memory size. For a 32K unit these switches correspond
to address bits 18-20 and are used to select a S-bit memory number or
the right three bits in a 7-bit number. For a 64K unit the left switch
must be set to the center IGN position; the other two correspond to
address bits 18 and 19 and are used to select a 2-bit memory number or
the right two bits in a 6-bit number. Completing the switch comple-
ment for each processor are a deselect switch and a pair of interleave
switches. Setting the 35 toggle to INTL interchanges either address bit
19 or 20 (depending on unit size) with bit 35 for a two-way interleave.
Setting the 34 toggle up interchanges either address bit 18 or 19 with
bit 34 for a four-way interleave.

-

G-12 Handling Memory

MGlO AND MHlO CORE MEMORIES

These two units are very similar. Both contain two controllers, each with
one module, and both operate with either a 22- or U-bit address. The two
have identical indicator panels, and their switch panels, located at the
lower right inside the front door, are almost identical as well. The MHlO is
slightly slower but has twice the capacity: the basic cycle time of the MGlO
is 1000 ns and its module capacity is 64K; corresponding statistics for the
MHlO are 1180 ns and 128K. Besides the usual buffer and address lights on
the indicator panel, there are two sets of control lights, one for each of the
controllers in the unit. No power switch is visible: it is located on the power
control panel on the rear plenum door.

The three switches at the bottom of the switch panel are for all proces-
sors. Ordinarily an incomplete cycle does not affect memory operation; the
unit simply drops the unfinished cycle and awaits the next request. But
running with ERROR STOP on causes the memory to cease operation with
INC RQ on when a processor fails to supply a write restart, and it also
causes a stop on detection of a parity error or other error in the control
logic. To free the memory so it may await further processor requests, push
up the RESET switch. Pressing RESET up while SING STEP is on allows
the memory to complete only one cycle in response to a single processor
request. In the absence of a second request in the interim, pressing RESET
again allows another request-cycle combination. However, if following com-
pletion of a cycle, a processor makes a request before RESET is pressed the
memory will return an acknowledgement, thus avoiding a nonexistent
memory indication. Of course the memory will hang in the second cycle,
either waiting to write or with the processor awaiting a read restart. Press-
ing RESET in this circumstance causes the memory to complete its cycle
leaving it free to acknowledge yet another request.

In the pair of switches just above, the left one selects which controller
shall have its buffer and address displayed on the indicator panel. Setting
the right switch to CHECK causes the latches for the buffer, address and
various control indicators in a controller to freeze. Should the controller in
which the error occurred not be the one currently displayed, that situation
can be remedied simply by flicking the left switch. Setting the right switch
to OVERRIDE frees the lights. In the upper half of the bottom panel section
are separate rows of maintenance switches for the two controllers. For nor-
mal operation all of these switches should be set down.

On the second panel section from the bottom on the MHlO is a switch
for deselecting the whole unit from all processors. The bank switches above
allow deselection of single banks (each bank is a half module, 0 and 1 with
controller 0, 2 and 3 with controller 1). Memory banks in use are identified
by lights at the top of the indicator panel. The other two switches are not
connected. The MGlO has bank switches, but the only other thing on the
same panel section is a lower bound address switch. This switch is, how-
ever, connected the same as the memory switch on the MHlO: setting it to
LOCAL deselects the unit.

On the third part of the panel are eight switches for selecting the
characteristics of the unit for each processor separately. The operator can
deselect the unit, select KAlO operation (l&bit address), or select operation

Handling Memory G-13

MGlO Switch Panel 7370-‘3 MHlO Switch Panel

Indicator Panel
8202-5

with a KIlO or KLlO (22-bit address). The indicator panel also has separate
active and request lights for the eight processor ports. The processors have
priority not in a fixed order, but rather in three sets: 0 and 1, 2 and 3, and
4-7. In the first two sets priority alternates between the two processors in
the set. In the third set the priority order is a loop - 4, 5, 6, 7, 4, . . . - in
which whenever the top priority processor gains access, top priority moves
to the next position. For example the priority order is initially 4 to 7, where
5 has priority over 6. Once 4 gains access the order becomes 5,6,7,4, where
5 now has top priority and 6 has priority over 4.

The MADR switches at the top of the panel are for selecting the mem-
ory number and controlling interleaving for all processors. Generally bits
19 and 20 are not used, and bit 18 is used only in the MGlO, unless a unit

-

-

-

G-14 Handling Memory

.-

has only one module or the capacity is decreased by deselecting banks. Of
course bits 14-17 are irrelevant for operations through any processor port
whose selection switch is set to KA. The number set into MADR switches
14-20 defines the lowest address (lower bound) in the unit, and addresses
are assigned through the two modules in order, skipping over any
deselected banks. However, if switch 35 is set to INTL, the even addresses
are assigned to controller 0 and the odd ones to controller 1, producing 2-
way interleaving within the unit. If both 34 and 35 are up, addresses are
assigned like 2-way interleaving, but only the even addresses are used at
all if the memory number is even and only the odd ones if the memory
number is odd. It is assumed in this case that some other memory is as-
signed a number that differs only in the LSB, producing 4-way interleaving
in the pair.

DMA20 MEMORY BUS ADAPTER

External memories can be used with a KLlO processor by employing a
DMA20 adapter to interface the KIlO external memory bus to the KLlO S
bus. Although every external memory has its own controller and must be
set up via its own switches, the DMABO serves as the S bus controller for
the whole external memory system, and it must be set up by the software
for the kind of interleaving used. The individual external memories that
are to be interleaved in a set of two or four must be connected to different
KIlO-bus ports, of which the DMA20 has four.

Setup is accomplished by means of the S bus diagnostic instruction, to
which the DMA20 is controller number 4. The diagnostic cycle is also used
to get error information and check data transfers between the processor and
buffers in the external memories. For use with the DMA20 are the follow-
ing two functions, 0 and 1, distinguished by the LSB of the function code.

Function 0, To Memory

CONTROLLER
CLEAR SELECT SET I1P
ERROR C3NTROLLER MEMORY
FLAGS STATE BITS

0 1 0 I1 IO j 0

0 I 2 ' 3 4 5 ' 6 7 8 ' 3 10 11 ' 12 13 14 ' 15 i6 17

FUNCTION

0 IO j 0 j 0 IO

'P '9 23 ' 21 22 23 ' 24 25 26 / 27 28 29 1 30 3, 32 1 33 34 35

5

6-12

Clear the controller error flags (see bits 3-5 of the return word).

If bit 12 is 0, ignore bits 6 and 7. But if it is 1, select the in-
terleave mode for the storage modules according to bits 6 and 7.

Handling Memory G-15

NOTE

State selection by bits 6 and 7 applies to the DMA20, even
though the interleave characteristics of external storage
modules must be selected manually.

Bits 6-7 State Selected

00 Off line
01 No interleave
10 2-way interleave
11 4-way interleave

Function 0, Return

READ 1 WRITE IADDRESS CONTROLLER
LAST REQUEST

LAST HIGH ORDER

PARITY ERROR STATE REFERENCE ADDRESS BITS
I RPO 1 RQI 1 R02 1 R03 READ 1 WRITE

0 I 2 3 4 5 6 7 8 ' 9 10 11 12 13 14 ' 15 16 17

18 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

3-5 These are error flags for the storage modules connected to this
controller. Setting a flag locks bits 8-35 on the identification of
the current reference.

3 A word with’even parity was read from a storage module.

4 A word with even parity was written in a storage module.

5 The controller has received an address with even parity
over the S bus. The address intended for the reference is
available in ERA.

6-7 These bits identify the current controller state as set by the func-
tion word to memory.

8-35 These bits regularly give the address of the most recent refer-
ence, whether it was read, write or both, and which words in the
4-word group were requested. However, when one of the error
flags (bits 3-5) is set, these bits lock onto the identifying infor-
mation for that reference. The bits remain static, even with addi-
tional errors, until the program unlocks the register by clearing
the error flags (a function word to memory with a 1 in bit 5).

G-16 Handling Memory

LAST ADDRESS OR FIRST ERROR ADDRESS

Function 1, To Memory

CONTROLLER LOOP
AROUND

0 IO 1 I 10 10 14 1

0 1 2 ' 3 4 5 ' 6 7 a 9 10 11 12 13 14 ' 15 16 17

FUNCTION

I olololo~l,

la 19 20 ' 21 22 23 ' 24 25 26 ' 27 28 29 ' 30 31 32 ' 33 34 35

12 For checking the transfer logic between the processor and the
buffer in a storage module, a 1 in this bit causes the next pair of
references, write followed by read, just to load the buffer and
then read it without affecting any memory location.

Function 1, Return

CONTROLLER TYPE LOOP
AROUND

0 10 1 110

0 1 2 13 4 5 ' 6 7 a '9 IO 11 12 13 14 ’ 15 16 17

1

1

’ ’ ’ ’
J

ia 19 20 21 22 23 24 25 26 27 28 29 30 31 32 I 33 34 35

12 The controller is set up to loop around a write-read pair of re-
fernces through a module buffer. Doing a single looparound
clears the bit.

G.2 DECSYSTEM-20 Memories

All DECSYSTEM-20 memory is internal and is handled entirely by the
program - there are no switches associated with it (power is controlled
through the main power system).

The DECSYSTEM-2020 has only one type of MOS memory; it is inte-
gral with the system and has no setup. Although it is expandable by adding
array boards, it is treated as a single unit with all access in single words
via the KS10 bus. General information about the memory, including size
and timing, is given in §1.8. 44.8 gives detailed information about memory
status, which is the link between the software and the memory controller:
the software can read error information, handle the memory flags, and
force errors in order to check the storage array correction circuits. Should
errors be discovered in an array board, the Monitor may be able to work
around it simply by not using the bad board. However, there is no way to
tell the Monitor initially that a board is bad, and hence there is no way to

Handling Memory G-17

prevent the Monitor from storing information - perhaps critical informa-
tion - in it. The best procedure therefore is to remove the bad board and
replace it with the last board in the array, so that all of storage is physi-
cally contiguous.

Several types of memories are available for use in other
DECSYSTEM-20s. Information about the characteristics of these memo-
ries is given in $1.7, and the remainder of this appendix discusses the way
the software handles them through the S bus diagnostic cycle. The earlier
of these memories are the MA20 and MB20, which have core storage mod-
ules that can be interleaved and which are so similar they are described
together. The latest storage equipment is the MF20 MOS memory, avail-
able only with an extended processor. In an MF20, a single controller can
handle three storage modules, each of which is treated as a separate mem-
ory unit. Interleaving is unnecessary as data is handled in 4-word groups
(referred to in the MF20 discussion as “quadwords,” as the word “group”
has a specific meaning in the MF20 hardware). In the descriptions of the S
bus diagnostic functions, bits for memory setup are indicated by an aster-
isk.

MA20 and MB20 Memories

The MB20 is slightly slower than the MA20 but has twice the capacity: the
basic cycle time of the MA20 is 1000 ns and its module capacity is 16K;
corresponding statistics for the MB20 are 1180 ns and 32K. A KLlO mem-
ory system can have two of these units. Each unit contains two controllers
(numbered 0 and 1 or 2 and 3), and each controller can handle four storage
modules (O-3).

The memory system is set up by assigning addresses to the controllers,
specifying the lower and upper address bounds for the storage modules on
the controllers, and specifying which requests within a 4-word group each
controller is to respond to. The controller address is simply the most signifi-
cant four bits of a memory address, and the address bounds correspond to
the next three or four bits of the memory address depending on whether the
modules are 32K or 16K. Bits 34 and 35 of an address indicate the particu-
lar word for which access is being made, but the request lines indicate
which words within the 4-word group are to be read or written. As an
example consider a memory with 32K modules (MB20), so each controller
has the full complement of 128K words associated with it. For no in-
terleave, the program could simply assign the same address to arbitrary
pairs of controllers, give lower and upper bounds for different halves of the
address range (000-011 and 100-111) to the paired controllers, and specify
that every controller should respond to all requests. With interleaving, two
controllers are accessed simultaneously; and with 4-way interleaving each
of the accessed controllers operates two storage modules simultaneously.
Hence for interleaving, the program assigns the same address to an even-
odd pair of controllers, specifying that the even controller shall respond to
the even requests (0 and 21, whereas the odd controller shall respond to the
odd requests (1 and 3). Since each controller then responds to only half the
addresses in a 4-word group, the address bounds assigned must cover a
range equal to twice the number of words of storage; in other words for the

G-18 Handling Memory

128K the range must be given as 256K (000-111). The way the modules are
set up inside the unit is handled automatically depending on whether the
program specifies a controller state of 2-way or 4-way interleaving. For 2-
way the address range is continuous and both requests are assigned to
every module. For 4-way the modules are handled in pairs: in each pair one
module is assigned half the range and one of the requests, the other is
assigned the same half of the range and the other request. For more com-
plete information along with detailed diagrams for all the cases, refer to the
appropriate maintenance manual.

If the last module on a controller fails, it can be deselected by limiting
the address range, i.e. lowering the upper bound. If speed must be main-
tained, the other three modules interleaved with it should also be
deselected. On the other hand, if capacity is more important, the matching
good modules in the two controllers can be 2-way interleaved, and the
fourth module of the other controller can be used without interleaving. If
any module other than the last fails, there is no way to deselect it without
also deselecting everything beyond it. Should this happen, in order to keep
as much memory functioning as possible, the bad module (three boards)
should be removed and the last module on that controller put in its place.

Memory setup as well as errors and various maintenance functions are
handled through the SBDIAG instruction, to which the four MA20 or MB20
controllers are numbered O-3. For use with these controllers are the follow-
ing two functions, 0 and 1, distinguished by the LSB of the function code.

Function 0, To Memory
x x * * * * *

CLEAR SELECT
ERillR :DNTR3~LER t NABlE S 5Li "E3dtS'S SET JP

UEMCAY

0 j
FLAGS STATE

0 IO 1

B'IS

RO3 1 RQ' 1 RL2 HSi 1
0 I 2 ' 3 4 5 6 7 8 ’ 9 IO I I 12 13 ‘4 ’ 15 ‘5 17

I F_INC:lON

s !. t’ $

‘,. ‘4 ?’ ’ 21 ?Z 23 ’ 24 15 20 ’ 21 28 29 ’ 3” 31 32 1 33 34 35

5 Clear the controller error flags (see bits 2 and 5 of the return
word).

6-12” If bit 12 is 0, ignore bits 6-11. But if it is 1, select the interleave
mode for the storage modules according to bits 6 and 7, and en-
able the word requests to which the controller will respond as
specified by bits 8-11.

Bits 6-7 State Selected

01 No interleave
10 2-way interleave
11 4-way interleave

Requests enabled must be consistent with the interleave selec-
tion: no interleave, enable all requests; 2- or 4-way enable RQO
and RQ2 in the even controller, RQl and RQ3 in the odd. Ena-
bling no requests takes the controller off line.

Handling Memory G-19

Function 0, Return
* *

I I I I I 1 I

PARTIAL ADDRESS CONTROLLER

CYCLl PARITY STATE
ERROR

I I I

0 I 2 3 4 5 6 7 8 ' 3 IO 11 ' 12 13 14 ' 15 16 17

I
18 19 20 ' 21 22 23 ' 24 25 26 ' 27 213 23 ' 30 31 32 ' 33 34 35

2, 5 These are error flags for the storage modules connected to this
controller.

2 A storage module failed to complete a cycle, or the proces-
sor failed to send data for the write part of a read-pause-
write within 8 ps.

5 The controller has received an address with even parity
over the S bus. The address intended for the reference is
available in ERA.

6-7” These bits identify the current controller state as set by the func-
tion word to memory.

Function 1, To Memory
* x * *

CONTROLLER LOOP HIGH ORDER
AROUND ADDRESS BITS

0 10 10 1 14 1 15 1 16 1 17

0 I 2 ' 3 4 5 ' 6 7 8 9 10 II 12 13 14 ' 15 16 17

* x * * * * * + x

LOWER UPPER SET UP
ADDRESS BOUND ADDRESS BOUND MODULE

SELECT MARGIN FUNCTION

18 I 19 I 20 I 21 I8 I 19 I 20 I 21
NUMBERS

o~olololl

I8 19 20 ' 21 22 23 ' 24 25 26 27 28 23 I 30 31 32 I 33 34 35

12 For checking the transfer logic between the processor and the
buffer in a storage module, a 1 in this bit causes the next pair of
references, write followed by read, just to load the buffer and
then read it without affecting any memory location.

14-26” If bit 26 is 0, ignore bits l&25. Otherwise assign numbers to the
storage modules as specified by bits 14-25. Essentially these bits
define the range of addresses to which the modules will respond.
Bits 14-17 give the four high order address bits, which are the
same for all modules on a controller. Selection of individual mod-
ules is by the next three or four address bits depending on
whether the modules are 32K or 16K. Configurations of thzse
bits are assigned to the modules in physical order over the range
from lower to upper, with duplication depending on the in-
terleave characteristics.

G-20 Handling Memory

27-30 These bits select a margin for diagnostic operation of the system.

0000 No-op - do not change present margin (if any)
0001 Return to normal operation (turn off margin)
0010
0011
0100
0101
1000
1001

Select low current margin
Select high current margin
Select low strobe margin
Select high strobe margin
Select low threshold margin
Select high threshold margin

Function 1, Return
x x * * * * * *

I I

I STORAGE MODULES INSTALLED
I

CONTROLLER TYPE

7 16 15 14 13 12 j I IO 0 IO I 1'
0 1 2 ' 3 4 5 ' 6 7 0 ' 9 IO II

* * * *

L ‘33P
AROUND

HIGH ORDER
ADDRESS BITS

I 14 1 15 1 16 / 17

12 13 14 ' 15 16 17

* * * * * * x *

LOWER UPPER WNNING
ADDRESS BOUND ADDRESS BOUND ON

REQUESTS ENABLED

18 I 19 I 20 I 21 18 / 19 1 20 1 21 MARGIN ROO 1 ROI 1 RO2 1 R03

20 ' 21 22 23 ' 24 25 26 ' 27 28 29 30 31 32 1 33 34 35 18 19

O-7”

8-11

Storage modules installed on the controller are indicated by 1s in
these bits. At present the maximum is four.

These bits specify the type of controller.

Customer unit)
MA20
DMABO)
MB20

12

(0
1

(2
3

The controller is set up to loop around a write-read pair of refer-
ences through a module buffer. Doing a single looparound clears
the bit.

Remaining bits indicate the way the controller and its modules have been
set up by previous functions.

MF20 Memory

A single MF20 controller handles three storage modules of 256K each. A
module is referred to as a “group”, and storage is in groups, blocks and
subblocks. A group contains four blocks, and a block contains four sub-
blocks, which are the basic storage units manipulated by the program in
setting up the memory. Each block of 64K words is four times the RAM
size, i.e. a block is 4 x 44 RAMS, and a subblock is one set of 44 RAMS
containing 16K words. The subblocks in a block are selected however by
address bits 34 and 35. Hence a given subblock contains every fourth word
in the address space corresponding to a block, and in access for a quadword,
one of the words is in each of the subblocks. This is equivalent to builtin 4-
way interleaving. The words are actually read or written in rapid succes-
sion, but from the point of view of the system the memory appears to be
four words wide.

Handling Memory G-21

A subblock contains 16K sets of 44 bits, each set containing a 43-bit
memory word. Bits O-35 are the 36 data bits, bits 36-41 are a 6-bit error
correction code (ECC), bit 42 is a parity bit for the 43-bit word, and bit 43 is
a spare that can be substituted for any bad bit in the word. Although there
is a given physical order in the numbering of the blocks and subblocks, the
correspondence of these to parts of the physical address space is determined
entirely by the software, which can set up a continuous address space out of
bits and snatches all over the array. This assignment, the spare substitu-
tion, and many other operations are handled through the S bus diagnostic
cycle. Besides the usual communication with the memory controllers, the
SBDIAG instruction also allows access in a single step mode wherein all
control signals, including even the clock, are simulated by the processor.
Information about how to handle these various operations is included in the
descriptions of the SBDIAG functions, to which most of the rest of this
section is devoted. There are eleven functions, O-12, to which the MF20
controllers are numbered 10-17. At the end of the section is a discussion on
recovering from double bit errors.

Function 0, To Memory

CONTROLLER CLEAR
iRR”R
FLL\OS

0 , 1 , I I I I I I I I I I I I I

1 2 I 3 4 5 6 1 8 I 5 10 11 1 I2 I3 14 ’ I5 16 17

FUNCTION

I t I 1 I I I I I I I I OlO(01 0,o

‘P 19 2: 1 21 22 Z? 1 24 15 26 I :7 28 2913’7 31 32 I 33 34 35

5 Clear the controller error flags (see bits O-5 of the return word).
Clearing these flags unlocks the error identification information
in the return words for this function and functions 2 and 6.

Function 0, Return

WRlTE ADDHESS
CON, HOi LAST REQUEST LAST HIGH ORDER

RAM LRROH PARilAL RFAC CONTROLLtH
P&HIT” CORRtCTO CYCLE tRROR PARIT” ERROn SinTF REFERENCE ADDRESS BITS
k RHOR

11 1 RQO) RQl 1 RQ2 1 RQ3 HEAD WRITS I I I

0 I 2 3 4 5 6 7 8 ’ 9 10 II 12 13 14 1 15 16 17

LAST ADDRESS OR FIRST ERROR ADDRESS

I I I I I I I I I I I I I I I I I

18 19 20 I 21 22 23 I 24 25 26 1 27 28 29 ’ 30 3 I 32 I 33 34 35

o-5 These are error flags for this controller and the storage groups
connected to it. Setting a flag latches bits 8-35 on the identifica-
tion of the current reference.

-

G-22 Handling Memory

0 A parity error was encountered in a control RAM (see func-
tion 2).

1 An incorrect word was read from storage (bit 3 is 11, but the
memory circuits were able to correct it.

2 The controller is hung up, or the processor failed to send
data for the write part of a read-pause-write within 8 ps.

3 An incorrect word was read from storage.

4 A word with even parity was received from the bus, and it
was written in storage with a forced 2-bit error.

5 The controller has received an address with even parity
over the S bus. The address intended for the reference is
available in ERA.

67

8-35

For compatibility these bits are both 1 to identify the controller
state as 4-way interleave. The programmer can regard the mem-
ory as four words wide, but physically this is accomplished by
interleaving the four subblocks in each block.

These bits regularly give the address of the most recent refer-
ence, whether it was read, write or both, and which words in the
quadword were requested. However, when one of the error flags
(bits O-5) is set, the identifying information for that reference is
latched into these bits. The bits remain static, even with addi-
tional errors, until the program unlatches the register by clear-
ing the error flags (through a function 0 word with a 1 in bit 5).
Note that the address is that given for the access even though the
error may be in some other word in the quadword (identified in
function 2).

Function 1, To Memory

CONTROLLER GROUP LOOP BACK

0 ENABLE SELLCT GH"UP , 1
I

2 2 ’ 3 4 5 6 1 8 ’ 9 IO 11 ‘2 13 14 15 16 17

* * * *

TAKE SPECIFY ENABLE
OFF SETUP STATUS 25 - 27 FUNCTION
LINE

SF I SF 1 0 0 0 1 I 1 , 1 I , I , , 0 , 1

‘8 ‘9 20’2’ 22 23 ’ 24 25 26 ’ 27 28 29 ’ 30 31 32 ’ 33 34 35

Function 1, Return
* * * *

CONTROLLER TYPE LOOPBACK GROUP

SELECTED

I I I I , I I 0 , 1 , 0 , 1 0 1 1 1 2 1 I

0 1 2 ’ 3 4 5 ’ 6 7 8 ’ 9 IO II 12 13 14 ’ 15 16 17

* * *

OFF SETUP

LINE STATUS

I I I I I I SF2 5F1 I I I I I I I

I8 19 20 ’ 21 22 23 ’ 24 25 26 ’ 27 28 29 ’ 30 31 32 ’ 33 34 35

Handling Memory G-23

8-11

12-14

25-28

In the return word these bits have the configuration 0101, indi-
cating the controller is an MF20.

A 1 in bit 12 sent out substitutes a single register for the array
boards in the group selected by bits 13 and 14. Hence the proces-
sor can exercise all the logic, including the error correction cir-
cuits, without affecting the MOS array. A 1 in bits 12-14 in the
return indicates which group, if any, is currently selected for
loopback operation.

A 1 in bit 28 sent out enables the contents of bits 25-27 to have
an effect; otherwise they are disabled. A 0 in bit 25 places the
controller on line; a 1 takes it off line. The same bit in the return
word indicates the current state of the controller.

Bits 26 and 27 exercise no hardware control. They simply set
up a pair of software flags that are read in the return. At
powerup the hardware clears these flags. The meaning of the
configurations given for them by the software is as follows.

01 All RAMS except address response are loaded, and any
required patching (including bit substitution) is done.

10 Controller configuration is complete.

11 Controller configuration is complete, and TGHA has been
run.

Function 2, To Memory
* * * * * *

-
CONTROLLER SELECT ARRAY BOARD PROM DATA

0 , 1 ,
C.RO”P FlELO BYTk

I I I I I I I I I 1
0 2 I i 4 i I f, : 8 9 I 3 I ’ 1 I7 Ii 14 15 Ih : I

SELECT DIAGNOSTIC FUNCTION
MIXER INPUT

SLLEC, M”S
I I 1 1 2 3 4 5 1 6 I I O,O,O,l ,o

I8 i9 20l>’ 22 ji 1 24 15 16 I 2: ZR 29 I 10 7’ 32 1 33 34 35

9-14 On each array board is a PROM containing four bytes that give
the board serial number and week of manufacture, the size of the
MOS RAMS used on the board (always 16K), and the name of the
MOS RAM vendor. To read this information, the program can
use these bits to select an array board (identifying it by group
and field) and to select an individual byte in the PROM on that
board.

23-27 The leftmost 1 in this set of bits selects the indicated input to the
diagnostic mixer in the controller for supplying a byte of data in
the return word. All OS in these bits selects the return of a byte
from an array board PROM as chosen by bits 9-14. Bits 26 and
27 also select various MOS signals for return, even though they
may be in use for selecting a mixer input.’

2 Mixer inputs 0, 1 and 7 are used by other functions.
-

G-24 Handling Memory

Function 2, Return
* * * * * * * *

WORD IN DIAGNOSTIC OR PROM DATA

ERROR

1 1 I I 1 1 I 1 1 I I 1
0 I 2 '3 4 5 '6 7 8' 9 IO II 1 12 13 14 15 16 17

MOS ADDRESS (SINGLE STEP)
CONTROL RAM

PARITY ERRORS

ADDRESS
L 1 , 1 I 1 I I TIMING BITSUB RESPONSE I I I 1

I8 19 20 ’ 21 22 23 I 24 25 26 ’ 27 28 29 ' 30 31 32 ' 33 34 35

5-6

7-14

20-27

28-30

When an error occurs, the address available through function 0
is that given for the access. The actual word, within the quad-
word, on which the error occurred is indicated by these bits.

The data byte from the array board PROM or the diagnostic
mixer as selected by the function.

In single step operation these bits give information about the
signals supplied to the array board. Configurations O-3 in bits 26
and 27 of the function word select respectively the row, column
and refresh address, and a group of miscellaneous signals.

A 1 in one of these bits indicates a parity error in the timing, bit
substitution, or address response RAM. An error indication here
is always accompanied by a 1 in bit 0 of the function 0 return.

Function 3, To Memory
* * * * * *

CONTROLLER (FAST
SET UP FIXED ENABLE

BUS)
VALUE LOGIC

OAT.4
O,l(I I 1 ,aCKN , “AILID (RD& 34 , RDA 3B 10 (11-13 I

0 I 2 ’ 3 4 5 ’ 6 7 8 3 IO I’ l 17 I3 14 ’ 15 16 I7

* * * * * * * *

SELECT FIXED VALUE LOGIC RAM LOCATION FUNCTION

I 1 1 1 I I 1 1 1 o,o, O,l, 1

I8 19 20 ’ 21 22 23 ’ 24 25 16 ’ 27 28 29 ’ 30 31 32 I 33 34 35

Function 3, Return
* * * *

(FAST
FIXED VALUE

BUS)
RAM CONTENTS

DL\T+?
I\CKN “AlJO RDL\34 Ron 35

I I , , I I I

0 / 2 1 3 4 5’ 6 7 8 9 10 11 1 I2 13 14 1 I5 16 17

I 1 , 1 1 I 1 , 1 I 1 I 1 I 1 I
18 19 20 ' 21 22 23 ' 24 25 26 1 27 28 29 ' 30 31 32 1 33 34 35

Each controller has a set of four RAMS for supplying logic signals whose
values are fixed by the program for the characteristics of the particular
system. These RAMS give the acknowledge and data valid signals for the
bus, and various configurations of the two least significant read address
bits for determining which word to read next during processing of a quad-
word. Bits 20-27 of the function word select among the 256 locations in the

Handling Memory G-25

RAMS loaded from bits 11-13, but the acknowledge RAM (loaded from bit
10) has only 128 locations selected by bits 21-27. There are separate load
enables for bit 10 and the remaining bits so the acknowledge RAM can be
loaded independently of the others. The only information in the return is
the contents of the four RAMS at the location specified by the function.3

Function 4, To Memory

CONTROLLER PORT SINGLE STEP CONTROL
LOOP
BACK

0 1
L\PHISE BPHL\SE DA,/\

, , I 1 I 1 COMING COMING VALID .L% MZ’,, I

0 I 2 1 3 4 5 6 7 0 9 10 11 I 12 13 14 15 16 17

* * * * * * * * *

SINGLE STEP ALLow ENABLE REFRESH INTERVAL FUNCTION

CONTROL REFRESH 24-30

I
REFRESH

NOW 1 I 1 I 1 o,o, l,O,O

18 19 20 21 22 23 24 25 26 ’ 27 28 29 I 30 31 32 1 33 34 35

Function 4, Return

SINGLE STEP CONTROL ECHO

4 PH45E B PHASE
I I 1 I I 1 1 COMINc? COMING I MZSDE I

3 7 I 3 4 5 1 h : 8 9 1 0 II I ‘2 Ii 14 I I5 16 17

* * * * * * * * *

REFRESH REFRESH INTERVAL COUNTER

nLLOWED

I0

5

9-20

I9 ?O 2’ 11 li 1 14 2’1 26 1 21 28 29 1 10 3’ 32

A 1 causes the controller to fail to respond to any information
received over the bus except to echo it back. The loopback thus
exercises bus reception and transmission in the controller with-
out affecting any circuitry associated with the storage array.
Note that even SBDIAG functions are simply echoed back and do
not generate a normal return. The condition can be cleared only
by an S bus reset given from the front end.

These bits are used to simulate various memory control signals
during single step operation. Note that individual ticks of the
clock are produced by giving a sequence of SBDIAGs each with
this function with a 1 in bit 14. To keep the controller in single
step mode, bit 15 must be 1 in every instance of this function.
Several of the bits are echoed back in the return.

I 33 34 15

21-30 These bits control the refreshing of the MOS data, wherein a 1 in
bit 21 enables refreshing. If bit 22 is 1, bits 24-30 select the
refresh interval in units of about .5 ks. (The interval is given as a
count on a clock that is the 30 MHz clock divided by 16.) The
return includes the value given by the function in bit 21, but bits
23-30 supply the current contents of the refresh counter (includ-
ing an overflow bit that sets when the specified interval is
reached).

3 The fast bus bit is not used and is read as a 0.

G-26 Handling Memory

Function 5, To Memory

7
CONTROLLER SINGLE STEP SIMULATED BUS SIGNALS

514RT START
0, I, 1 I /tPHI\SC BPH4SE R00 RUI R”l R03 Rt”D WRiTE

./ ’ 3 4 5 6 1 8 1 9 ‘3 ‘I I I2 13 !4

SINGLE STEP SIMULATED ADDRESS FUNCTION

, 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 1 34 , 35 0~0~1,0,1

‘P ‘9 2-1 ?I 27 73 1 24 25 76 ’ 27 2ij 29 1 30 31 32 1 33 34 35

Function 5, Return

ROW ADDRESS
I

STROBES
(SINGLE STEP)

1 I I 1 I 0111213 I I I I I I I
SY ’ ‘i : ; : ; 2’ 24 2‘1 16 1 2: if! 29 ’ 3“ 3’ 3? 1 33 34 35

Single step operation exercises all of the storage logic, but a buffer substi-
tutes for the actual MOS array. Hence the single step address supplied by
this function includes only the bits that select the array group and the
individual word in the set of four (row and column addresses to the array
are unneeded). Bits 6-13 simulate signals that would be received by the
controller over the bus. Note that this function has an overall enable: none
of the other bits have any effect unless bit 15 is 1. This is so the function
can be given just to get the information in the return word in which bits
24-27 contain the present values of the row address strobes to the four
array boards in the group (meaningful only in single step).

Function 6, To Memory

CONTROLLER DATA FOR ECC COMMANDS 2,4. 5
ENAe.LB

7 13
FOR
4e.1

LOI ’ 1 I 1 I 32 , 16 , 8 , 4 , 2 , 1 , P I
0 1 2 1 3 4 5 I 6 7 8 1 9 IO II I 12 13 14 15 I6 I7

ECC COMMAND FUNCTION

I I I 1 I I 1 I I 1 0,0,1,1,0

18 19 20 ’ 21 22 23 ’ 24 25 26 1 27 28 29 1 30 3, 32 ’ 33 34 35

Function 6, Return (except ECC command 2)

DATA READ BY ECC COMANDS 0, 1,4, 5,6

1 I , 1 1 d 32, 161 81 4, 2, 1 I P SPARE 1
0 I 2 ’ 3 4 5 I 6 ! 8 1 9 10 II I I2 13 14 15 I6 I1

COLUMN ADDRESS
STROBES

(SINGLE STEP)

1 1 I 1 I 01112l3 I I 1 1 I 1 I

I8 19 20’71 22 (3 24 25 16 I 21 28 29 I 30 31 32 ’ 33 34 35

Handling Memory G-27

Bits 24-27 of the return contain the present values of the column address
strobes to the four array boards in the group selected by the single step
address given by function 5. Other information in the return (in some or all
of bits 7-14 or occupying the entire word) depends on the ECC command in
bits 25-27 of the function. These commands are as follows.

Read the contents of the ECC register in return bits 7-13. This regis-
ter regularly receives each ECC code read from storage, but the set-
ting of any function 0 error flag locks it, and it remains static until
the error flags are cleared or ECC command 2 is performed.

Read the syndrome register in return bits 7-12. This register regu-
larly receives the syndrome produced by comparing each ECC code
read from storage with that generated by the ECC circuits for the
word read. But the setting of any function 0 error flag locks the regis-
ter, and it remains static until the error flags are cleared or ECC
command 2 is performed. The syndrome actually identifies which bit
is in error, provided there is only one, and is zero when there is no
error.

Using function bits 7-13 as an ECC code (as though read from stor-
age), run through a correction pass on a zero data word, and send back
the corrected data word as the return for the function.

No-op (may be used to read the column address strobes).

If bit 15 out is 1, load bits 7-13 into the complement register; in any
event read the contents of this register in return bits 7-13. Before
each word is written in storage, bits of its ECC code corresponding to
1s in the complement register are complemented. This of course
makes it appear that the word is in error when read - for normal
operation the complement register is kept clear.

Do ECC command 4, but then cause the very next write to store the
contents of the complement register as the ECC code in place of that
generated by the ECC circuits.

Read the saved ECC code and spare bit in return bits 7-14 (see com-
mand 7).

On the next write, save the generated ECC code and whatever is
written in the spare bit for subsequent reading by command 6.

Function 7, To Memory
* * * * * * * * * v

CONTROLLER SET UP BIT SUBSTITUTION ENABLE
BIT NUMBER 7- 14

IGNORE
0 (1 , I 1 I I I I 1 I SINGLE PARITY I

3 I 2 1 3 4 51 6 1 8 1 9 IO II 1 I2 I3 14 I5 16 17

* * * * * * *

SELECT BIT SUBSTITUTION RAM LOCATION FUNCTION

GROUP BLOCK HD.l_F SUBBLOCK
I I I 1 I I 1 I OjO~l,lll

18 19 20 21 22 23 ’ 24 25 26 I 27 28 29 1 30 31 32 1 33 34 35

-

G-28 Handling Memory

Function 7, Return
* * * * * * * *

BIT SUBSTITION RAM CONTENTS

BIT NUMBER ,GNORE

, I I I 1 1 I I 1 1 1 SiNkIsLE PARITY 1 I

0 1 2 1 3 4 51 6 7 8 I 9 IO 11 I 12 13 14 15 16 17

WRITE ENABLES

(SINGLE STEP)

I I I I I O(l(Z(3 I , 1 I I , I

I8 19 20 1 21 22 23 24 25 26 27 28 29 1 30 3 I 32 I 33 34 35

The software can use the spare bit as a substitute for any other bit in a
MOS word, but the substitution must be the same for all words in a given
8K half subblock. If bit 15 is 1, the contents of bits 7-14 are loaded into the
substitution RAM at the location for the half subblock selected by bits
21-27. In the data for the RAM, bits 7-12 give the number of the MOS-
word bit for which the spare is substituted, and a 1 in bit 13 causes the
controller to ignore single errors - the controller still corrects such errors,
but does not set the related flags (bits 1 and 3 in the function 0 return). Bit
14 must be adjusted to produce odd parity in the contents of the RAM
location. Note that a RAM location must be set up for every half subblock
used in the MOS array, even if only to substitute the spare bit for itself (bit
43) and to ensure correct parity. Note also that the selections made in bits
21-27 correspond to physical parts of the storage array that respond in a
given access, not to the addresses supplied over the S bus (see function 12).

The return word supplies the contents of the RAM location selected by
the function, and the present values of the write enable signals to the four
array boards in the group selected by the single step address given by
function 5.

Function 10, To Memory

CONTROLLER SELECT VOLTAGE ENABLE VOLTAGE ENABLE
MARGINS MARGINS I - 14

O,l, I # I 12.601 5.251-2.101-5.46 12 1 5 i -2 l-5.2 1

0 I 2 ’ 3 4 5 I 6 1 8 1 9 10 II ’ 12 13 14 15 16 I7

OlS.4Bl.E FUNCTION
ERROR CLEAR

Cc’RCTlON DC BAD

I I I I I 1 I I I 0,1,0,0,0

18 19 20 ’ 21 27 73 ’ 24 25 26 27 28 29 1 30 31 32 ’ 33 34 35

Function 10, Return

VOLTAGE MARGINS VOLTAGE MARGINS

I SELECTED ENABLED

1 I 8 1 12.60 1 5.25 I-2.101 -5.46 12 1 5 I-2 - 5.2 1 I

3 ’ 2 ’ 3 4 5 1 6 7 8 1 9 IO 11 I 12 13 14 15 16 17

1 , I I I I 1 I I I 1 I 1 1 I 1 1 I

I8 19 20 I 21 22 23 1 24 25 26 ’ 27 28 29 1 30 3, 32 1 33 34 35

Handling Memory G-29

7-15 If bit 15 out is 1, 1s in bits 11-14 select which voltages are to be
margined in subsequent operation; and for any voltage running
on margin, a 1 or 0 in the corresponding bit among bits 7-10
selects the margin value. E.g. if bit 12 is 1 selecting a margin for
5 volts, a 1 in bit 8 selects 5.25 volts, whereas a 0 selects 4.75. In
other words, 1s select high margins in absolute value, OS select
low margins (11.40, 4.75, -1.90, -4.94). Margins enabled and se-
lected are identified in the return word.

A 1 in this bit sent out disables the correction circuits, so that
although errors are still detected, any incorrect word is sent back
over the bus as is. A 0 reestablishes error correction, and the
same bit in the return indicates the current state of the correc-
tion logic.

A 1 in the return bit indicates bad dc levels in the storage unit,
meaning battery backup has failed. A 1 in the bit sent out clears
the flag.

26

27

-

Function 11, To Memory
* * * * *

CONTROLLER SELECT TIMING RAM.. .

0, 1, I 1 I I 1 I I I L L I I 1 I
0 I 2 13 4 5 6 1 81 9 IO I1 1 12 13 14 1 15 16 17

* * * * * * * * * *

. . . LOCATION sunset SET UP TIMING CHARACTERISTICS FUNCTION
21 -21

WRITE 20 HL\IF DL\T/\ CLEAR 4

I I
RAS cas PARITY ENABLE APHL*t READY BUSY I I O,l,O,O,l

18 19 20 21 22 23 I 24 25 26 I 27 28 29 1 30 31 32 I 33 34 35

Function 11, Return

The software must set up the timing characteristics of each controller for
the MOS RAMS used with it. To time various signals the clock steps
through the locations of a timing RAM, whose bits control the on and off
states of those signals. If bit 20 out is 1, the contents of bits 21-27 (adjusted
for odd parity) are loaded into the timing RAM at the location specified by
bits 13-19. Whether loaded or not, the contents of the selected location are
returned in the same bits.4

4 The signals represented by bits 29 and 30 in the return are not used and are read as 0 and
1 respectively.

-

G-30 Handling Memory

Function 12, To Memory
* * * * * * *

CONTROLLER SET UP ADDRESS RESPONSE
CNABLF

8.14
GROUP BLOCK NOT

0, 1, I I I 1 PaRlrY I 1 HERt

2 1 3 4 5 16 ’ 8 1 9 ‘0 ‘I I 12 ii 14 I5

* * * * * *

El
16 I7

BLOCK PART OF PHYSICAL ADDRESS FUNCTION

I 14 1 15 , 16 , 17 1 18 , 19 I 1 1 I 0 , 1 , 0 , 1 , 0

‘6 19 2, 2’ ?2 23 ’ 24 25 26 ’ 21 78 79 1 3Q 31 32 1 33 34 35

Function 12, Return
* * * * * *

ADDRESS RESPONSE RAM CONTENTS

1 1 I I I I 1 I I I I I 1 I I I I

‘8 ‘9 2 0 ‘71 22 23 ’ 24 25 26 21 78 29 ’ 30 31 32 I 33 34 35

The high order six bits in a physical address on the S bus specify a particu-
lar block of storage, but there is no predetermined relationship between the
actual blocks and those bits. Instead when an address appears on the bus,
the left six bits are used, in every controller, to access a location in an
address response RAM whose contents indicate whether the corresponding
block of storage is connected to that controller, and if so, which one it is.
The software can create a contiguous address space with any desired corre-
spondence to storage, even deleting blocks to avoid unacceptable error lev-
els. If bit 15 out is 1, the contents of bits 8-14 (adjusted for odd parity) are
loaded into the address response RAM at the location specified by bits
20-25, which represent the left six bits of a physical address. If a storage
block with this controller is to respond to the given physical block address,
the data given for that RAM location must identify it by group and block;
otherwise a 1 in bit 14 inhibits any response to that address at this control-
ler. The return word supplies the contents of the selected RAM location.

When a word read from memory has good parity but a nonzero syn-
drome (see function 61, there must be two bits that are in error. When this
happens the memory sends the bad word to the processor along with an
indication that the error is uncorrectable. All may not be lost
however - it is possible to recover the data provided that at least one of
the bad bits is a hard failure. To do this we must know the syndromes for
the bits, and these are as follows, where the syndromes are given as three
octal digits corresponding to their position in bits 7-12 of the return word
for function 6.

Handling Memory G-31

Bit Syndrome Bit Syndrome Bit Syndrome

0 014 14 120 28 214

1 024 15 124 29 220

2 030 16 130 30 224

3 034 17 134 31 230

4 044 18 140 32 234

5 050 19 144 33 240

6 054 20 150 34 244

7 060 21 154 35 250

8 064 22 160 36 200

9 070 23 164 37 100

10 074 24 170 38 040

11 104 25 174 39 020

12 110 26 204 40 010

13 114 27 210 41 004

Then follow this procedure.

1. Get the bad word and its syndrome. Since the bad bits can be anywhere,
also get the ECC for the word. (Available through function 6).

2. Write the complement of the bad word back into the failed location.

3. Read the complement and take the equivalence of that word with the
original bad word (including their ECCs).

4. If the result is zero or contains more than two Is, nothing can be done.

5. If exactly two bits are set in the equivalence, then exclusive OR it into
the original bad word and the result is the correct data.

6. If there is one bit set in the equivalence, then it identifies one of the bad
bits in the original word. Get the syndrome for it from the table above
and look up that syndrome in the left column of the large table below.
Among the entries for that syndrome find the pair of numbers that
includes the number of the known bad bit. The other number in the
pair identifies the other bad bit. (If no such bit pair can be found, you’re
out of luck).

Syndromes us Error Pairs

004 00,40 01,39 02,03 04,38 05,06 07,OB 09,lO 11,37 12,13

18,19 20,21 22,23 24,25 26,36 27,28 29,30 31,32 33,34

010 00,41 01,03 02,39 04,06 05,38 07,09 08,lO 11,13 12,37

18,20 19,21 22,24 23,25 26,28 27,36 29,31 30,32 33,35

014 00,42 01,02 03,39 04,05 06,38 07,lO 08,09 11,12 13,37

18,21 19,20 22,25 23,24 26,27 28,36 29,32 30,31 34,35

020 00,03 01,41 02,40 04,OB 05,09 06,lO 07,38 11,15 12,16

18,22 19,23 20,24 21,25 26,30 27,31 28,32 29,36 39,42

024 00,02 01,42 03,40 04,07 05,lO 06,09 08,38 11,14 12,17

18,23 19,22 20,25 21,24 26,29 27,32 28,31 30,36 39,41

14,15 16,17
41,42
14,16 15,17
40,42
14,17 15,16
40,41
13,17 14,37

13,16 15,37

G42 Handling Memory

030 00,Ol 02,42 03,41 04,lO 05,07
18,24 19,25 20,22 21,23 26,32

034 00,39 01,40 02,41 03,42 04,09
17,37 18,25 19,24 20,23 21,22

040 00,06 01,OB 02,09 03,lO 04,41
15,23 16,24 17,25 18,37 26,34

044 00,05 01,07 02,lO 03,09 04,42
15,22 16,25 17,24 19,37 26,33

050 00,04 01,lO 02,07 03,OB 05,42
X,25 16,22 17,23 20,37 27,33

054 00,38 01,09 02,OB 03,07 04,40
14,25 15,24 16,23 17,22 21,37

060 00,lO 01,04 02,05 03,06 07,42
15,19 16,20 17,21 22,37 29,33

064 00,09 01,38 02,06 03,05 04,39
14,19 15,lB 16,21 17,20 23,37

070 00,OB 01,06 02,38 03,04 05,39
14,20 15,21 16,lB 17,19 24,37

074 00,07 01,05 02,04 03,38 06,39
14,21 15,20 16,19 17,lB 25,37

100 00,13 01,15 02,16 03,17 04,19
11,41 12,40 14,39 18,38 37,42

104 00,12 01,14 02,17 03,16 04,lB
11,42 13,40 15,39 19,38 37,41

110 00,ll 01,17 02,14 03,15 04,21
12,42 13,41 16,39 20,38 37,40

114 00,37 01,16 02,15 03,14 04,20
11,40 12,41 13,42 17,39 21,38

120 OOJ7 01,ll 02,12 03,13 04,23
14,42 15,41 16,40 22,38 37,39

124 00,16 01,37 02,13 03,12 04,22
11,39 14,41 15,42 17,40 23,38

130 00,15 01,13 02,37 03,ll 04,25
12,39 14,40 16,42 17,41 24,38

134 00,14 01,12 02,ll 03,37 04,24
13,39 15,40 16,41 17,42 25,38

140 00,21 01,23 02,24 03,25 04,ll
18,42 19,41 20,40 22,39 37,38

144 00,20 01,22 02,25 03,24 04,37

11,38 18,41 19,42 21,40 23,39

150 00,19 01,25 02,22 03,23 04,13
12,38 18,40 20,42 21,41 24,39

154 00,lB 01,24 02,23 03,22 04,12
13,38 19,40 20,41 21,42 25,39

160 00,25 01,19 02,20 03,21 04,15
14,38 18,39 22,42 23,41 24,40

164 00,24 01,lB 02,21 03,20 04,14
15,38 19,39 22,41 23,42 25,40

170 00,23 01,21 02,lB 03,19 04,17
16,38 20,39 22,40 24,42 25,41

174 00,22 01,20 02,19 03,lB 04,16
17,38 21,39 23,40 24,41 25,42

200 00,28 01,30 02,31 03,32 04,34
204 00,27 01,29 02,32 03,31 04,33
210 00,26 01,32 02,29 03,30 05,33
214 00,36 01,31 02,30 03,29 04,35

220 00,32 01,26 02,27 03,28 07,33
224 00,31 01,36 02,28 03,27 07,34
230 00,30 01,28 02,36 03,26 07,35

06,OB 09,38 11,17
27,29 28,30 31,36
05,OB 06,07 lo,38
26,31 27,30 28,29
05,40 07,39 11,19
27,35 33,36 38,42
06,40 08,39 11,lB
28,35 34,36 38,41
06,41 09,39 11,21
28,34 35,36 38,40
05,41 06,42 10,39
26,35 27,34 28,33
08,41 09,40 11,23
30,34 31,35 38,39
07,41 08,42 10,40
29,34 30,33 32,35
07,40 09,42 10,41
29,35 31,33 32,34
08,40 09,41 lo,42
30,35 31,34 32,33
05.20 06,21 07.22

12,14
39,40
11,16
32,36
12,20

13,15 16,37

12.15 13,14

13,21 14,22

12,21 13.20 14,23

12,lB 13,19 14,24

11,20 12,19 13,lB

12,24 J3,25 14.18

11,22 12,25 13,24

11.25 12,22 13.23

11,24 12,23 13,22

08.23 09,24 10.25

05,21 06,20 07,23 08,22 09,25 lo,24

05.18 06,19 07.24 08.25 09,22 10.23

05,19 06,18 07,25 08,24 09,23 10,22

05.24 06,25 07,18 08.19 09,20 10.21

05,25 06,24 07,19 08,lB 09,21 10,20

05.22 06.23 07,20 08.21 09,lB 10.19

05,23 06,22 07,21 08,20 09,19 lo,18

05.12 06.13 07,14 08.15 09,16 10.17

05,13 06,12 07,15 08,14 09,17 lo,16

05.37 06.11 07,16 08.17 09,14 10.15

05,ll 06,37 07,17 08,16 09,15 10,14

05.16 06.17 07,37 08.11 09,12 10.13

05,17 06,16 07,ll 08,37 09,13 10,12

05.14 06.15 07,12 08.13 09,37 10.11

05,15 06,14 07,13 08,12 09,ll 10,37

05,35 26,41 27,40 29,39 33,38 36,42
06,35 26,42 28,40 30,39 34,38 36,41
06,34 27,42 28,41 31,39 35,38 36,40
05,34 06,33 26,40 27,41 28,42 32,39
08,34 09,35 29,42 30,41 31,40 36,39
08,33 10,35 26,39 29,41 30,42 32,40
09,33 10,34 27,39 29,40 31,42 32:41

Handling Memory G-33

234 00,29 01,27 02,26 03,36 08,35 09,34 10,33 28,39 30,40 31,41 32,42

240 04,26 05,27 06,28 07,29 08,30 09,31 lo,32 33,42 34,41 35,40 36,38

244 00,35 04,36 05,28 06,27 07,30 08,29 09,32 10,31 26,38 33,41 34,42

250 00,34 04,28 05,36 06,26 07,31 08,32 09,29 10,30 27,38 33,40 35,42

254 00,33 04,27 05,26 06,36 07,32 08,31 09,30 10,29 28,38 34,40 35,41

260 01,34 02,35 04,30 05,31 06,32 07,36 08,26 09,27 10,28 29,38 33,39

264 01,33 03,35 04,29 05,32 06,31 07,26 08,36 09,28 lo,27 30,38 34,39

270 02,33 03,34 04,32 05,29 06,30 07,27 08,28 09,36 lo,26 31,38 35,39

274 01,35 02,34 03,33 04,31 05,30 06,29 07,28 08,27 09,26 lo,36 32,38

300 11,26 12,27 13,28 14,29 15,30 16,31 17,32 18,33 19,34 20,35 36,37

304 11,36 12,28 13,27 14,30 15,29 16,32 17,31 18,34 19,33 21,35 26,37

310 11,28 12,36 13,26 14,31 15,32 16,29 17,30 18,35 20,33 21,34 27,37

314 11,27 12,26 13,36 14,32 15,31 16,30 17,29 19,35 20,34 21,33 28,37

320 11,30 12,31 13,32 14,36 15,26 16,27 17,28 22,33 23,34 24,35 29,37

324 11,29 12,32 13,31 14,26 15,36 16,28 17,27 22,34 23,33 25,35 30,37

330 11,32 12,29 13,30 14,27 15,28 16,36 17,26 22,35 24,33 25,34 31,37

334 11,31 12,30 13,29 14,28 15,27 16,26 17,36 23,35 24,34 25,33 32,37

340 11,34 12,35 18,36 19,26 20,27 21,28 22,29 23,30 24,31 25,32 33,37

344 11,33 13,35 18,26 19,36 20,28 21,27 22,30 23,29 24,32 25,31 34,37

350 12,33 13,34 18,27 19,28 20,36 21,26 22,31 23,32 24,29 25,30 35,37

354 11,35 12,34 13,33 18,28 19,27 20,26 21,36 22,32 23,31 24,30 25,29

360 14,33 15,34 16,35 18,29 19,30 20,31 21,32 22,36 23,26 24,27 25,28

364 14,34 15,33 17,35 18,30 19,29 20,32 21,31 22,26 23,36 24,28 25,27

370 14,35 16,33 17,34 18,31 19,32 20,29 21,30 22,27 23,28 24,36 25,26

374 15,35 16,34 17,33 18,32 19,31 20,30 21,29 22,28 23,27 24,26 25,36

G-34 Handling Memory

Index

9 l-36
,, l-37
., l-37
:, l-37
;, l-38
@, l-36
[1, l-37
O&2-1
4-word group, l-10, l-31, 3-12, G-2
l&bit address, l-9, 1-14
50 Hertz, 5-13

A, l-24, 2-2
A+l, 2-2
A bit

TOPS-lo, 3-22,4-11,5-17
TOPS-20,3-32,4-19

AC, 2-2
AC + 1,2-2
AC,AC + 1, 2-2
AC address, 2-6
AC block, l-9
AC left, 2-2
AC right, 2-2
AC stack pointer, 5-24
access time, l-34, l-40
accessible, 1-16, 3-22, 3-28, 4-10, 5-17
accounting, 3-55
accumulator, l-9, 1-14
accumulator address, 1-22.1, 1-26, l-36
address, 1-3, G-1
address bounds, G-18
address break

KAlO, 5-36, F-22
KIlO, 5-4, F-11
KLlO, 3-51

Address Break, 5-36
address debugging

KAlO, 5-36, F-22
KIlO, 5-4, 5-21, F-11
KLlO, 3-51

address failure
TOPS-lo, 3-24, 5-21
TOPS-20,3-40

Address Failure Inhibit, 2-68.1, 3-52, 5-22
Address Parity Error, 3-65
address range

KAlO, KIlO, l-40
KLlO, l-32
KSlO, l-35

address response MF20, G-31
address space, 1-2, 1-17
address stop

KAlO, F-22
KIlO, F-11

address structure, G-4
addressing, l-2, l-32, l-35, l-40
addressing conventions, l-37
ADJBP, 2-89
ADJSP, 2-83
age trap, 3-35, 4-21
AND, 2-35
ANDCA, 2-35
ANDCB, 2-35
ANDCM, 2-35
AOBJN, 2-42
AOBJP, 2-42
AOJ, 2-45
AOS, 2-45
APR

KAlO, 5-3, 5-35, 5-36, 5-40
KIlO, 5-3, 5-12,5-15
KLlO, 3-17,3-44,3-51, 3-53, 3-64

APRID, 3-4494-29
AR, l-8, 1-13
AR parity error, 3-24, 3-41
ARX parity error, 3-25, 3-41
arithmetic

fixed point, 2-11, A-18
floating point, 2-17, A-19

arithmetic shifting, 2-38, A-21
arithmetic testing, 241, A-21

Index-l

AS, l-38
ASCII code, B-3
ASH, 2-41
ASHC, 2-41
associative memory, 5-20
auto restart KIlO, 5-12

Bad Memory Data, 4-41
base addresses, 5-24
base page number

TOPS-lo, 3-19,4-g, 5-16
TOPS-20, 3-28,4-17

base register
see base page number

basic mode, 2-l
BCIO, 2-128
BCIOB, 2-129
binary point, l-20
bit assignments, C-l

KAlO, C-17
KIlO, C-14
KLlO, C-2
KSlO, C-8

BLKI, 2-133
BLKO, 2-133
block, G-21
BLOCK, 2-84
block IO, 2-133
block transfers, 2-8, A-18
BLT, 2-8
Boolean functions, 2-32, 2-38, A-20
BR, l-38
BRPBR7,P3 ,

BSIO, 2-128
BSIOB, 2-129
byte, l-3
byte alignment, 2-86
byte array, 2-90
byte incrementing, 2-87
byte manipulation, Z-85, A-26
byte pointer, 2-85
byte transfer, 3-6, 3-62

C bit
TOPS-lo, 3-22,Pll
TOPS-20, 3-32,P20

cache, l-9, 1-14
KLlO, 3-11, C-2
KSlO, 4-8

Cache Directory Parity Error, 3-65
cache refill, 3-17
cache strategy, 3-16, 3-45
cache sweep, 3-14
CAI, 2-43

CAM, 2-43
card codes, B-10
carries, 2-l 1
Carry 0,2-67
Carry 1,2-68
CCA, 3-14, 3-X,3-16
central processor, l-1
character codes, B-l
cleaning, F-l
CLEAR, 2-32
CLK, 5-41,5-42,5-43
clock

line frequency, 5-14, 5-37 _
real time DKlO, 5-41

operation, F-15, F-24
Clock flag, 5-14,5-37
CLRPT, 3-47,4-31
CMPS, 2-97
combined arithmetic shift, 2-41
combined rotate, 2-40
combined shift, Z-40
compare strings, 2-97
compatibility, E-l
complement, 1-19
concealed mode, 1-16
conditional jumps, 2-64
conditions in, 2-132

see status
conditions out, 2-132

address debugging
KIlO, 5-4, C-14
KLlO, 3-51, C-5

clock, 5-41
console, 5-4, C-14, C-17
error logic

KLlO, 3-64, C-7
KSlO, 4-41, C-12

interrupt
KAlO, 5-33, C-18
KIlO, 5-8, C-14
KLlO, 3-8, C-2
KSlO, 4-5, C-8

interval counter (KLlO), 3-56
maintenance (KIlO), 5-15
memory management

KAlO, 5-40, C-18
KIlO, 5-24, C-15
KLlO, 3-45, C-5
KSlO, 4-30, C-11

memory status, 4-44, C-13
meters (KLlO), 3-54, C-6
paging, see memory management
performance analysis (KLlO), 3-59, C-7

-

.-

Index-2

conditions out (Cont.),
processor

KAlO, 5-35, C-17
KIlO, 5-12, C-16

system flags (KSlO), 4-41, C-12
system timing

KLlO, 3-54,3-56, C-6
KSlO, 4-38, C-12

CONI, 2-132
CON1 APR,, 3-6495-12, 5-36
CON1 CLK,, 5-42
CON1 PAG,, 3-4595-26
CON1 PI,, 3-9, 5-9, 5-33
CON1 MTR,, 3-55
CON1 TIM,, 3-56
CONO, 2-132
CON0 APR,, 3-64, 5-12,5-35
CON0 CLK,, 5-41
CON0 PAG,, 3-45,5-25
CON0 PI,, 3-8,5-8,5-33
CON0 MTR,, 3-54
CON0 TIM,, 3-56
CONSO, 2-133
console, 5-2, C-14, C-17
Console Interrupt, 4-41
console operator panel

KAlO, F-16
KIlO, F-4

CONSZ, 2-133
control register, 2-130
control/status, 2-130

see conditions out and status
controller

IO (KSlO), 2-127
memory, G-1

Corrected Memory Data, 4-41
counting ones, 2-l 16
CST, 3-34, 4-21
CST words, 3-35,4-22
current AC block, 3-46, 4-31
current context, 3-43, 4-29
CVTBDO, 2-99
CVTBDT, 2-99
CVTDBO, 2-100
CVTDBT, 2-100

DADD, 2-15
DATAI, 2-132
DATA1 APR,, 3-53, 5-3
DATA1 CLK,, 5-43
DATA1 PAG,, 3-46,5-25
DATAO, 2-132
DATA0 APR,, 3-51,5-15, 5-40
DATA0 CLK,, 5-42

DATA0 PAG,, 3-46, 5-24
DATA0 PI,, 5-3
DATA0 PTR,, 5-4
DDIV, 2-16
decimal conversion, 2-98
decimal print routine, 2-118
DECsystem-10, 1-6, 1-39

memories, G-2
DECSYSTEM-20, l-5

memories, G-1 7
DECSYSTEM-2020, l-11

memory, l-34,4-43, G-17
deposit, 3-6, 3-62, F-10, F-21
deselecting, G-2
device codes, 2-131
device service, 4-2, 5-4, 5-30
DFAD, 2-24
DFDV, 2-25
DFMP, 2-24
DFN, 2-29
DFSB, 2-24
DGFLTR, 2-28.4
diagnostic functions, 3-68, p-43, 5-15
direct-access processor, l-l
direct addressing, 1-25
dismissing an interrupt

KAlO, 5-34
KIlO, 5-10
KLlO, 3-Q
KSlO, 4-6

dispatch interrupt
KIlO, 5-6
KLlO, 3-6

DIV, 2-14
DKlO, F-15, F-24
DMABO memory bus adapter, G-15
DMOVE, 2-7
DMOVEM, 2-7
DMOVN, 2-7
DMOVNM, 2-7
DMUL, 2-16
double bit error

KSlO, 4-43
MF20, G-31

double length numbers
fixed, l-20
floating, l-22

double moves, 2-6, A-18
double precision

fixed point, 2-15, A-19
floating point, 2-23, 2-25, 2-28.6, A-20

doubleword, l-3
doubleword count, 3-53
DPB, 2-88
DSUB, 2-16

Index-3

E, 1-23, 2-l
ER, 2-2
EO, l-2492-2
El, I-25,2-2
E+l, 2-2
E,O, 2-2
E&+11,2-2
E bus, 1-4, l-10,3-2
ECC, 443, G-32
ECC command, G-28
ECC On, 4-43
edit, 2-104

example, 2-110
EDIT, 2-105

flowchart, 2-109
effective address calculation, l-25

extended, l-26
flowchart, l-30

Enable Pager, 345, 4-30, 5-24
entry, l-16,2-70, 2-74
EQV, 2-37
ERA, 3-66
error address register, 3-66, 443
Error Hold, 443
error logic

KLlO, 3-63
KSlO, 60

examine, 3-6,3-62, F-10, F-21
examples, 2-l 11
excess 128 code, 1-21
excess 1024 code, l-22.1
EXCH, 2-3
EXCHMD (EDIT), 2-107
execute, 2-3, 2-63
execution time, 2-2
executive base address, 3-45, 4-30, 5-24
executive mode, 1-15, 3-1, 4-l
executive process table, 1-18

see process table
executive programming, 347, 4-33, 5-23,

540
executive stack pointer, 5-25
expanded range floating point numbers, l-22
extended addressing, l-26

examples, 2-120
flowchart, l-30

extended block transfer, 2-10
extended fast memory reference, 1-29
extended immediate mode, l-29
extended instruction, l-24
extended move, 2-6

FAD, 2-21
FADL, 2-30
FADR, 2-19
fast memory, l-9, 1-14
FDV, 2-23
FDVL, 2-31
FDVR, 2-20
First Part Done, 2-68
FIX, 2-28
fixed point arithmetic, 2-11, A-18

double, 2-15
single, 2-12

fixed point numbers, l-19
double length, l-20

fixed value RAM, G-25
FIXR, 2-28
Flag 24, 4-41
flag restoration, 2-66, 2-70, 2-73
flag-PC doubleword, 2-66,2-71
flags, 2-65
FLDSEP (EDIT), 2-107
Floating Overflow, 2-68.1, 5-37
floating point arithmetic, 2-17, A-19

double, 2-26
expanded range, 2-25
software, 2-28.6
standard range, 2-23

number conversion, 2-27
scaling, 2-28.5
single with rounding, 2-19
single without rounding, 2-21

floating point numbers, 1-21
double precision, l-22, 2-28.6

Floating Underflow, 2-68.1
FLTR, 2-28.1
FMP, 2-22
FMPL, 2-31
FMPR, 2-20
formats

instructions, l-23
numbers, 1-19

fixed, 1-19
floating, 1-21
software floating, 2-28.6

words, A-2, A-4
front end functions (KLlO), 3-62
FSB, 2-22
FSBL, 2-30
FSBR, 2-20
FSC, 2-28.5
full word data transmission, 2-3, A-18

Index4

G format, l-22
GDBLE, 2-28.4
GDFIX, 2-28.3
GDFIXR, 2-28.3
GFAD, 2-26
GFDV, 2-27
GFIX, 2-21
GFIXR, 2-28.2
GFLTR, 2-28.2
GFMP, 2-26
GFSB, 2-26
GFSC, 2-28.6
global AC address, l-29
global address, l-27, 2-6
global byte pointer, 2-86
global index, l-27
global indexing, l-28
global indirect word, l-28
global stack pointer, 2-80
GSHGL, 2-28.4

half word, l-3
half word data transmission, 2-55, A-24
HALT, 2-71, 2-74
halt status (KSlO), 4-38
hard page failure

TOPS-lo, 3-24,4-14, 5-21
TOPS-20,3-40,4-26

hardware addressing, l-32, l-35, l-40
hardware options, 3-44, 4-30
hardware read in = read in

high interrupt assignment, 4-3
HLL, 2-56
HLLE, 2-57
HLLO, 2-56
HLLZ, 2-56
HLR, 2-60
HLRE, 2-61
HLRO, 2-61
HLRZ, 2-60
hoiding an interrupt, 3-9, 4-6, 5-10
HRL, 2-57
HRLE, 2-58
HRLO, 2-58
HRLZ, 2-58
HRR, 2-59
HRRE, 2-60
HRRO, 2-59
HRRZ, 2-59

I, l-23, l-25
IBP, 2-88
IDIV, 2-14
IDPB, 2-89

ILDB, 2-88
illegal address, 3-41
illegal indirect, 3-41
immediate mode, l-26
IMUL, 2-14
in-out, 2-126, 2-130, A-26
In-out Page Failure, 3-65, (4-39), 5-13
in-section address, l-2
inaccessible, l-16
indicator panels, F-7, F-19
indicators

KAlO, F-16
KIlO, F-4

index register, 1-9, l-14
index register address, l-22, l-26, l-36
indirect addressing, l-25, l-36
indirect bit, l-23
initial conditions, 2-130, 2-134

see conditions out
input-output, l-23

KSlO, 2-126
pre-KSlO, 2-130, A-26

instruction format, 1-22.1
instruction modes, 2-l
instructions, A-16

arithmetic testing, 2-41, A-21
block transfers, 2-8, A-18
Boolean functions, 2-32, A-20
bytes 2-85, A-26
decimal conversion, 2-98
double move, 2-6, A-18
edit, 2-104
fixed point, 2-11, A-18

double precision, 2-15
single precision, 2-12

floating point, 2-17, A-19
conversion, 2-27
double precision,

expanded range, 2-25
software format, 2-28
standard range, 2-23

scaling, 2-28.5
single precision

with rounding, 2-19
without rounding, 2-21

full word, 2-3, A-18
half word, 2-55, A-24
in-out, 2-126, 2-130, A-26
jump, 2-62, A-25
logic, 2-32, A-20
logical testing, 2-47, A-22
move, 2-3, A-18
number conversion, 2-27, Z-98, A-19
rotate, 2-40, A-21

Index-5

instructions (Cont.),
scaling, 2-28.5
shift, 2-40, A-21
stack, 2-79, A-25
string, 2-90
string edit, 2-104

instruction times, 2-2, D-l
KAlO, D-11
KIlO, D-5

instruction word, l-9
integer instructions, 2-11
interleaving

DECsystem-10, G-15
old memories, G-3

DECSYSTEM-20, G-18
interrupt

KAlO, 5-30
KIlO, 5-4
KLlO, 3-2
KSlO, 4-2

interrupt conditions
KAlO, 5-33, C-18
KIlO, 5-8, C-14
KLlO, 3-8, C-2
KSlO, 4-5, C-8

interrupt functions
KIlO, 5-6
KLlO, 3-5

interrupt instructions
KAlO, 5-31
KIlO, 5-7
KLlO, 3-7
KSlO, 4-4

interrupt levels
KAlO, 5-30
KIlO, 5-4
KLlO, 3-3
KSlO, 4-2

interrupt processing
KAlO, 5-31
KIlO, 5-5
KLlO, 3-4
KSlO, 4-3

interrupt programming
KAlO, 5-32, 5-35
KIlO, 5-8, 5-10
KLlO, 3-8, 3-10
KSlO, 4-4,4-6

Interrupt Request, 3-65, 6Al
interrupt requests

KAlO, 5-30
KIlO, 5-4
KLlO, 3-3
KSlO, 4-2

interval counter (KLlO), 3-54, 3-56
Interval Done, 3-56, Al
Interval Overflow, 3-56
interval period, 3-56, 4-38
interval register (KSlO), 4-37
invalidate cache, 3-13
IO, 2-126, 2-130, A-26
IO address, 2-127, C-8
IO control/status, 2-130
IO controller, 2-127
IO data register

KLlO, 2-134
KSlO, 2-130

IO handling
KSlO, 2-130
pre-KSlO, 2-134

IO reset, 3-64, 5-12, 5-36
IOR, 2-36
IOWD, 2-84
IR, l-8, 1-13, l-38

JCRY, 2-65
JCRYO, 2-65
JCRY l2-65
JEN, 2-72, 2-74
JFCL, 2-64
JFFO, 2-65
JOV, 2-65
JRA, 2-77
JRST, 2-70, 2-73
JRST forms, 2-72
JRSTF, 2-70, 2-74
JSA, 2-77
JSP, 2-75
JSR, 2-75
JSYS, A-l
jump, l-8, 1-13
JUMP, 2-44
jumps, 2-62

KAlO, l-38
memory, l-39

kernel mode, 1-16
KEY RDI = read in

KAlO, F-20
KIlO, F-8

KIlO, l-38
memory, l-39

KLlO, l-7
memory, 1-31

KSlO, 1-12
memory, l-34

Index-6

LDB, 2-88
line printer codes, B-6
literal, l-37
load bit, 3-45
local address, l-27
local index, l-27
local indexing, l-28
local indirect word, l-27
local pointer

byte, 2-85
stack, 2-80

local section, l-29
location EB t- 1, 2-2
logic, 2-32, A-40
logical shifting, 2-38, A-21
logical testing and modification, 2-47, A-22
look bit, 3-16, 3-45
loopback, G-26
low interrupt assignment, 4-3
LSH, 240
LSHC, 2-40
LUUO, 2-122

M bit
KLPO, 3-32,3-35,3-39
KSlO, 4-20, P21,4-26

MA, l-38
MAlO, G-6
.MA20, G-18
machine modes, 1-15
maintenance conditions KIlO, 5-15
maintenance panel, F-4, F-17
MAP

TOPS-lo, 3-26,P16, 5-26
TOPS-20,342,4-28

map pointers
KLlO, 3-37, C-4
KSlO, 4-23, C-10

margin check panel, F-4, F-17
margins

KIlO, 5-15
MA20, MB20, G-21
MF20, G-30

mask, 247
MBlO, G-7
MB20, e-18
MB Parity Error, 3-65
MDlO, G-8
MElO, G-10
memories, G-1

DECsystem-10, G-2
DECSYSTEM-20, G-17
DMA20, G-15

memories (Cont.),
KSlO, 4-43
MAlO, G-6
MA20, G-18
MBlO, G-7
MB20, G-18
MD109 C-8
MElO, G-10
MFlO, G-11
MF20, G-21
MGlO, MHlO, G-13

memory
KAlO, KIlO, 139
KLlO, 131
KSlO, l-3494-43

memory access time, l-34, l-40
memory adapter, G-15
memory address, l-23, l-25
memory allocation

KAlO, 141
KIlO, l-40
KLlO, l-32
KSlO, l-35

memory characteristics
KAlO, KIlO, l-39
KLlO, l-32
KSlO, l-34

memory capacity, 1-2
memory management

KAlO, 5-38, C-18
KIlO, 5-15, C-15
KLlO, 343, C-5
KSlO, 4-29, C-10

memory protection (KAlO), 5-38
Memory Protection, 5-37
Memory Power Failed, 4-43
memory status (KSlO), 4-43, C-13
memory status table, 3-34, 4-21
memory stop, F-6, F-18
memory timing, l-34, 140
MESSAG (EDIT), 2-107
meters (KLlO), 3-53, C-6
MFlO, G-11
MF20, G-21

address response, G-31
double bit error, C-31
ECC command, G-28
fixed value RAM, G-25
loopback, G26
margins, G-29
refresh, G-26
single step, G-26
spare bit, G-29
syndrome, G-28, G-32
timing, G-30

Index-7

MGlO, G-13
MHlO, G-13
MI, l-38
microcode options, 3-44, 4-30
microcode version, 3-44, 4-30
microcontroller, l-8, l-13
millisecond counter, 4-37
mnemonics, l-5, A-l

alphabetic, A-12
derivation, A-6
numeric, A-8

modes, instruction, 2-l
arithmetic testing, 2-42
fixed point, 2-12
floating point, 2-19, 2-21
halfword, 2-55
logic, 2-32
logical testing, 2-48
move, 2-4

modes, machine, 1-15
modified bit

KLlO, 3-32, 3-35, 3-39
KSlO, 4-20, 4-21,P26

Monitor, 1-15
Monitor programming

KAlO, 5-40
KIlO, 5-23
KLlO, 3-47
KSlO, 4-33

MOS memory, G-21
MOVE, 2-4
move instructions, 2-3
move strings, 2-92.1
MOVM, 2-5
MOVN, 2-4
MOVS, 2-4
MOVSLJ, 2-92.1
MOVSO, 2-93
MOVSRJ, 2-96
MOVST, 2-94
MQ, l-8
MTR, 3-54,3-55,3-57
MUL, 2-13
multiple entry, 2-77
MUUO, 2-123
MUUOs, A-8

nested subroutines, 2-77, 2-84
No Divide, 2-69
No Memory, 3-65, Al
nonexistent IO register, 4-14, 4-27
nonexistent memory, 4-14, 4-27
Nonexistent Memory, 5-14, 5-37
no-ops, 2-63

NOP (EDIT), 2-108
normalization, 2-18
normalized operands, l-22
number conversion, 2-27, 2-98, 2-118
number formats, 1-19, A-3, A-5
number system, l-19

fixed point, l-19
floating point, 1-21

octal-to-decimal conversion, 2-l 18
ones complement, 1-19
operating keys

KAlO, F-18
KIlO, F-8

operating switches
KAlO, F-22
KIlO, 5-4,5-g, 5-13, F-10

operation
memories, G-1
processors, F-l

KAlO, F-16
KIlO, F-3

OR, 2-36
ORCA, 2-36
ORCB, 2-27
ORCM, 2-36
overflow, l-20, l-39, 2-11, 2-17
Overflow, 2-67, 5-37
overflow trapping, 2-78

P bit
TOPS-lo, 3-22, 5-17
TOPS-20,3-32

PAG
KIlO, 5-24, 5-25, 5-26
KLlO, 3-45, 3-46, 3-47

page, l-2
page address, 3-34, 4-20
Page Enable, 5-24
page fail word

TOPS-lo, 3-24,P14, 5-21
TOPS-20,3-40,4-26

page failure
TOPS-lo, 3-23,P14, 5-20
TOPS-20, 3-39, 4-26

page map, l-15, l-18
TOPS-lo, 3-19, 4-9, 5-16
TOPS-20, 3-28, 4-17

page mapping, 3-22
TOPslO, 3-22,P10, 5-17
TOPS-20, 3-32,P19

page number, l-31
TOPS-lo, 3-18, 4-9, 5-16
TOPS-20, 3-27, 4-17

Index-8

f-

page refill POP, 2-81
TOPS-lo, 3-23,P11, 5-20 POPJ, 2-82
TOPS-20, 3-32,3-34,3-39, 4-19,4-20, popping, 2-79

4-24
page refill failure (TOPS-IO), 3-24, 5-22

PORTAL, 2-70, 2-74
Power Failure

page table KAlO, 5-34
TOPS-10, 3-22,4-11, 5-20 KIlO, 5-12, 5-13
TOPS-20,3-3274-19 KLlO, 3-65

page table parity error KSlO, 4-41
TOPS-lo, 3-24 powers of two, A-27
TOPS-20,341 previous context

page use bits KIlO, 5-27
TOPS-lo, 3-22,Pll KLlO, 343
TOPS-20, 3-32,P19 KSlO, 4-29

paging, 1-15 previous context AC block, 346, 4-31
TOPS-lo, 3-18,4-g, 5-16 previous context execute = PXCT
TOPS-20,3-27,P17 Previous Context Public, 2-65, 349, 5-28

paging formats previous context section, 346
KIlO, C-15 Previous Context User, 2-65, 349, 4-35,
KLlO, C-3 5-28
KSlO, C-8 previous context XCT = PXCT

paging pointer evaluation priority interrupt, 3-2, 4-2, 5-4, 5-30
example, 3-38, 4-25 see interrupt
pointers process table, 1-18

KLlO, 3-35, C-4 TOPS-lo, 3-19,4-g, 5-19
KSlO, 4-22, C-9 TOPS-20, 3-28,P17

procedure, 3-39, 4-24 process use word, 4-22
parity, 2-112 processor
Parity Error KAlO, KIlO, l-38

KAlO, 5-34 KLlO, l-7
KIlO, 5-13 KSlO, 1-12
KSlO, 4-43 processor compatibility, E-l

PC, l-8, 1-13 processor conditions
PC word, 2-66, 2-71 KAlO, 5-35, C-17
PDP-10, l-l KIlO, 5-11, C-16
per process area, 1-18, 3-19, 4-10, 5-16 KLIO, 3-63, C-7
performance analysis (KLlO), 3-58, 3-61 KSlO, 440, C-12
physical address space processor identification, 2-111

TOPS-lo, 3-19, 4-9, 5-16 processor priority, G-5
TOPS-20,3-27,4-17 processor serial number, 344, 4-30, 5-26

physical device number (KLlO), 34 program control, 2-62, A-25
per process area, l-18, 3-19, 4-10, 5-16 Program flags, 2-54, 2-65, 2-70, 2-74
physical device numbers (KLlO), 3-4 program management
PI KAlO, 5-38, C-18

K&O, 5-395-33 KIlO, 5-15, C-15
KIlO, 5-3, 5-8, 5-9 KLlO, 343, C-5
KLlO, 3-8,3-g, 3-66, 3-68 KSlO, 4-29, C-10

POINT, 2-69 program restrictions, 2-135
pointer program stop, F-6, F-18

byte, 2-85 programming conventions, l-35
IO block, 2-133 programming examples, 2-l 11
paging, 3-35, 4-22 proprietary violation
stack, 2-79 TOPS-lo, 3-24, 5-22

pointer evaluation, 3-35, 4-22 TOPS-20,340

Index-9

protection (KAlO), 1-18, 5-38
PTR, 5-4
Public, 2-68.1
public mode, 1-16
public page, 1-16
PUSH, 2-80
Pushdown Overflow, 5-36
pushing, 2-79
PUSHJ, 2-82
PXCT, 3-48, 4-34, 5-27

quadword, G-18

RDAPR, 441
RDCSB, 4-32
RDCSTM, 4-32
RDEACT, 3-57
RDEBR, 4-30
RDERA, 3-66
RDHSB, 40
RDI = read in
RDINT, 4-38
RDIO, 2-128
RDIOB, 2-129 -
RDMACT, 3-57
RDPERF, 3-61
RDPI, 4-5
RDPUR, 4-33
RDSPB, 4-32
RDTIM, 438
RDTIME, 3-55
RDUBR, 431
read-modify-write, l-31, l-34
read in, F-8, F-20
readin mode, 5-2
real time clock DKlO, see clock
refresh, G-26

KLlO, l-33
KSlO, l-34

Refresh Error, 4-43
register file (KSlO), 1-13
relocation (KAlO), 5-38
reload counter (KIlO), 5-20, 5-25
restore, 2-66, 2-70
reverse BLT, 2-81
reverse digits, 2-115
RIM = read in
ROT, 2-40
rotate, 2-38, A-21
ROTC, 2-40
rounding, 2-19, 2-28
RSW, 5-3
RUN, F-5, F-17

S bus diagnostic instruction, 3-68
S Bus Error, 3-65
saving flags, 2-65
saving PC, 2-63
SBDIAG, 3-66
scaling, 2-18
section pointer, 1-18

KLlO, 3-36, C-4
KSlO, 422, C-9

section table, 3-28, 417
SELECT (EDIT), 2-106
sense switches, l-38, 5-13
serial number, 344, -0, 5-26
SETA, 2-33
SETCA, 2-33
SETCM, 2-34
SETM, 2-34
SETO, 2-33
SETZ, 2-32
SFM, 2-72
shadow area, 5-24
shift and rotate, 2-38, A-21
SIGST (EDIT), 2-106
single precision

fixed, 2-12, A-18
floating, 2-19, 2-21, A-19

single section KLlO, l-8
single step memory, G-26
SKIP, 2-44
SKPA (EDIT), 2-108
SKPM (EDIT), 2-107
SKPN (EDIT), 2-107
small user, l-38, 5-15
Small User, 5-24
small user violation, 5-22
soft page failure

TOPS-lo, 3-25,415, 5-22
TOPS-20, 3-32, 341,419,427

software double precision, 2-28
SOJ, 246
SOS, 246
spare bit, G-29
special page tables, 3-34, 421
WI’, 3-34,421
stack, 2-79, A-25

operations, 2-79, 2-83
pointer, 2-79

standard interrupt
KAlO, 5-31
KIlO, 5-6
KLlO, 3-5
KSlO, 4-4

standard range tldating point numbers, l-21

Index-10

state code, 3-35, 4-21
status, 2-130, 2-132

clock, 5-42
error logic (KLlO), 3-64, C-7
interrupt

KAlO, 5-33, C-18
KIlO, 5-9, C-14
KLlO, 3-9, C-2
KSlO, 4-5, C-8

interval counter, 3-56
memory management

KAlO, 5-40, C-18
KIlO, 5-25, C-15
KLlO, 3-45, C-5
KSlO, 4-29, C-10

memory status (KSlO), 4-43, C-13
meters (KLlO), 3-55, C-6
paging, see memory management
performance analysis (KLlO), 3-61,
processor

KAlO, 5-36, C-17
KIlO, 5-12, C-16
KLlO, 3-64, C-7
KSlO, 4-41, C-12

system flags (KSlO), 4-41, C-12
system timing

KLlO, 3-55, C-6
KSlO, 4-38, C-12

user accounts (KLlO), 3-57
STOP (EDIT), 2-108
storage, Gl
string, l-3, 2-91
string editing, 2-104
SUB, 2-13
subblock, G-21
supervisor mode, 1-16
subroutines, 2-74
Sweep Busy, 3-65
Sweep Done, 3-65
switches

KAlO, F-22
KIlO, F-10

SWPIA, 3-14
SWPIO, 3-15
SWPVA, 3-15
SWPUO, 3-16
SWPVA, 3-15
SWPVO, 3-15
syndrome, G-28, G-32
system flags (KSlO), 4-40, C-12

system operations
KAlO, 5-195-30
KIlO, 5-1, 5-4
KLlO, 3-l
KSlO, 4-l

system organization
KAlO, KIlO, l-39
KLlO

DECsystem-10, l-4, l-6
DECSYSTEM-20, l-4, l-5

KSlO, l-11
system timing

KLlO, 3-54, C-6
KSlO, 4-37, C-12

c-7

table searching, 2-l 19
TDC, 2-52
TDN, 2-51
TDO, 2-52
TDZ, 2-51
test instructions

arithmetic, 2-41, A-21
logical, 2-47, A-22

TIM, 3-55, 3-56, 3-59, 3-61
time base, 3-54, 4-37
Time Out, 5-13
time to go register, 4-37
timer, 4-37, 5-13
Timer Enabled, 5-13
timesharing, 1-15
timing, 2-2, D-l

charts
KAlO, D-12
KIlO, D-8

clock, 5-41, 5-43
interrupt

KAlO, 5-35
KIlO, 5-10
KLlO, 3-10
KSlO, 4-6

MF20, G-30
processor, D-l

KAlO, D-11
KIlO, D-5

timing and accounting KLlO, 3-53
TIOE, 2-129
TIOEB, 2-130
TION, 2-129
TIONB, 2-130
TLC, 2-50

Index-l 1

TLN, 2-49
TLO, 2-50
TLZ, 2-50
Trap 1, Trap 2, 2-68.1
Trap Offset (KAlO), 5-37
trapping, traps

overflow, 2-78
page failure

TOPS-lo, 3-23,P14, 5-20
TOPS-PO, 3-39,4-26

uuo, 2-122
TRC, 2-49
TRN, 2-48
TRO, 2-49
truncation, 1-21, l-22, 2-27
TRZ, 248
TSC, 2-53
TSN, 2-52
TSO, 2-54
TSZ, 2-53
twos complement, 1-19

UFA, 2-30
UMOVE, 4-36
UMOVEM, 4-37
unassigned codes, 2-123
uncorrectable memory error, 4-14, 4-27
Uncorrectable Error Hold, 4-43
Unibus, l-l, 2-126
Unibus adapter, l-11, 4-2
unimplemented operations, l-23, 2-122
unload cache, 3-13
User, 2-68.1
user AC block, 3-46, 4-31, 5-24
user accounts, 3-56, C-6
User Address Compare Enable, 5-24
user base address, 3-46, 4-31, 5-24
user fast memory block

see user AC block
User In-out, 2-68.1, 5-36
user mode, l-15, 2-135
user process table, 1-19

see process table
user programming, 2-135
User Time, 5-42
uuo, 2-122

vector interrupt
KLlO, 3-6,3-62
KSlO, 4-4

virtual address space, 1-2, 1-14, 1-17
TOPS-lo, 3-19,4-g, 5-16
TOPS-20, 3-27, 4-17

virtual cache (KSlO), 1-14
VMA, l-8, 1-13

W bit
TOPS-IO, 3-22,P11,5-17
TOPS-20,3-32

word, l-2
Word Empty, 5-26
word format, A-2
workspace, 1-15
WRAPR, 4-41
WRCSB, 4-32
WRCSTM, 4-32
WREBR, 4-30
WRFIL, 3-17
WRHSB, 40
WRINT, 4-38
WRIO, 2-128
WRIOB, 2-130
write-protected, 1-16
write violation

TOPS-lo, 3-25,P15,5-23
TOPS-20, 3-41, 4-27

WRPAE ,3-59
WRPI, 4-5
WRPUR, 4-32
WI?SPB, 4-31
WRTIM, 4-38
WRTIME, 3-54
WRUBR, 4-31

X, l-25
XBLT, 2-10
XCT, 2-63
XHLLI, 2-62
XJEN, 2-71
XJRSTF, 2-71
XMOVEI, 2-6
XOR, 2-37
XPCW, 2-71

Y, l-25
validate cache, 3-13
vector address, 4-4 zero, l-20

Index-12

/ -

/.
\

DECsystem-10
DECSYSTEM-20

Processor Reference Manual
AD-H391 A-T1

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

Cl Assembly language programmer
Cl Higher-level language programmer
0 Occasional programmer (experienced)
Cl User with little programming experience
III Student programmer
Cl Other (please specify)

Name

Organization

Street

city

Date

Telephone

State Zip Code
or Country

I
_---- Do Not Tear - Fold Here and Tape ___--------------_-__-_______---------------

IllIll

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MRl-2/Ll2

MARLBOROUGH, MASSACHUSETTS 01752

-

-/

-1
-I
m’ :
-1 ’

I
I

-/

-1
-I

I

I
I ’
I
I

- - - - DO Not Tear - Fold Here and Tape -----------_______----~~-------------------- I
I

’ . .

